Geometric Interpretation of Sensitivity to Structured Uncertainties in Spintronic Networks

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
S. P. O’Neil;E. A. Jonckheere;S. Schirmer
{"title":"Geometric Interpretation of Sensitivity to Structured Uncertainties in Spintronic Networks","authors":"S. P. O’Neil;E. A. Jonckheere;S. Schirmer","doi":"10.1109/LCSYS.2025.3567866","DOIUrl":null,"url":null,"abstract":"We present a geometric model of the differential sensitivity of the fidelity error for state transfer in a spintronic network based on the relationship between a set of matrix operators. We show an explicit dependence of the differential sensitivity on the fidelity (error), and we further demonstrate that this dependence does not require a trade-off between the fidelity and sensitivity. We prove that for closed systems, ideal performance in the sense of perfect state transfer is both necessary and sufficient for optimal robustness in terms of vanishing sensitivity. We demonstrate the utility of this geometric interpretation of the sensitivity by applying the model to explain the sensitivity versus fidelity error data in two examples.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"192-197"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10990146/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a geometric model of the differential sensitivity of the fidelity error for state transfer in a spintronic network based on the relationship between a set of matrix operators. We show an explicit dependence of the differential sensitivity on the fidelity (error), and we further demonstrate that this dependence does not require a trade-off between the fidelity and sensitivity. We prove that for closed systems, ideal performance in the sense of perfect state transfer is both necessary and sufficient for optimal robustness in terms of vanishing sensitivity. We demonstrate the utility of this geometric interpretation of the sensitivity by applying the model to explain the sensitivity versus fidelity error data in two examples.
自旋电子网络对结构不确定性敏感性的几何解释
基于一组矩阵算子之间的关系,建立了自旋电子网络中状态转移保真度误差微分灵敏度的几何模型。我们展示了差分灵敏度对保真度(误差)的显式依赖,并且我们进一步证明了这种依赖不需要在保真度和灵敏度之间进行权衡。我们证明了对于封闭系统,在完全状态转移意义上的理想性能对于在消失灵敏度方面的最优鲁棒性是必要和充分的。我们通过在两个例子中应用该模型来解释灵敏度与保真度误差数据来证明这种灵敏度几何解释的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信