Hans Jakob Damsgaard;Konstantin J. Hoßfeld;Jari Nurmi;Thomas B. Preußer
{"title":"Parallel Accurate Minifloat MACCs for Neural Network Inference on Versal FPGAs","authors":"Hans Jakob Damsgaard;Konstantin J. Hoßfeld;Jari Nurmi;Thomas B. Preußer","doi":"10.1109/TCAD.2024.3511343","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) is ubiquitous in contemporary applications. Its need for efficient acceleration has driven vast research efforts into the quantization of neural networks with low-precision numerical formats. Models quantized with minifloat formats of eight or fewer bits have proven capable of outperforming models quantized into same-size integers. However, unlike integers, minifloats require accurate accumulation to prevent the introduction of rounding errors. We explore the design space of parallel accurate minifloat multiply-accumulators (MACCs) targeting the AMD VersalTM FPGA fabric. We experiment with three variations of the multiply-and-shift and adder tree components of a minifloat MACC. For comparison, we apply similar alterations to a parallel integer MACC. Our results show that custom compressor trees with external sign-inversion gates reduce the mean area of the minifloat MACCs by 17.7% and increase their clock frequency by 16.2%. In comparison, custom compressor trees with absorbed partial product generation gates reduce the mean area of integer MACCs by 28.1% and increase their clock frequency by 3.60%. Comparing the best-performing designs, we observe that minifloat MACCs consume 20% to 180% more resources than integer ones with same-size operands without accounting for a conversion back into a floating-point format, and 60% to 300% more resources when including it. Our data enable engineers to make informed decisions in their designs of deeply integrated embedded ML solutions when trading off training and fine-tuning effort versus resource cost.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"44 6","pages":"2181-2194"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777058/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) is ubiquitous in contemporary applications. Its need for efficient acceleration has driven vast research efforts into the quantization of neural networks with low-precision numerical formats. Models quantized with minifloat formats of eight or fewer bits have proven capable of outperforming models quantized into same-size integers. However, unlike integers, minifloats require accurate accumulation to prevent the introduction of rounding errors. We explore the design space of parallel accurate minifloat multiply-accumulators (MACCs) targeting the AMD VersalTM FPGA fabric. We experiment with three variations of the multiply-and-shift and adder tree components of a minifloat MACC. For comparison, we apply similar alterations to a parallel integer MACC. Our results show that custom compressor trees with external sign-inversion gates reduce the mean area of the minifloat MACCs by 17.7% and increase their clock frequency by 16.2%. In comparison, custom compressor trees with absorbed partial product generation gates reduce the mean area of integer MACCs by 28.1% and increase their clock frequency by 3.60%. Comparing the best-performing designs, we observe that minifloat MACCs consume 20% to 180% more resources than integer ones with same-size operands without accounting for a conversion back into a floating-point format, and 60% to 300% more resources when including it. Our data enable engineers to make informed decisions in their designs of deeply integrated embedded ML solutions when trading off training and fine-tuning effort versus resource cost.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.