Lujie Yu , Donghao Liu , Jiebei Zhu , Huan Zhou , Yunfeng Li , Yongzhen Wang , Hongjie Jia
{"title":"Enhanced precision data center server power consumption model with temperature estimation based on CPU operating statues","authors":"Lujie Yu , Donghao Liu , Jiebei Zhu , Huan Zhou , Yunfeng Li , Yongzhen Wang , Hongjie Jia","doi":"10.1016/j.apenergy.2025.126097","DOIUrl":null,"url":null,"abstract":"<div><div>To mitigate energy consumptions in data centers, the accurate establishment of a server power consumption model is imperative. Traditional server power consumption model, which rely solely on CPU utilization, often overlook the CPU temperature and operating statues inherent characteristics, resulting in substantial forecast errors. In response to this gap, a novel enhanced precision Power consumption Model based on Temperature estimation considering CPU working state (PMTC) model, is proposed based on the identification of CPU operating statuses. By incorporating temperature variables at the initial model construction phase, the PMTC model effectively captures the delayed dynamic characteristics of server power consumption changes that are influenced by the lagging adjustments in CPU core temperatures, thereby eliminating temperature-related modeling inaccuracies. In the subsequent power forecasting stage, the PMTC model accurately identifies specific CPU operating statues, which facilitate precise estimations of the CPU core temperature, thus circumventing the implementation challenges associated with additional measurements of temperature variables. To validate the efficacy of the proposed PMTC model against traditional server power consumption models, a dedicated server power consumption testbed was established. The results demonstrate that the PMTC model, by incorporating the temperature-related delayed dynamic characteristics of server power consumption change without augmenting the dimensions of input data, significantly reduces modeling calculation errors.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"394 ","pages":"Article 126097"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192500827X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To mitigate energy consumptions in data centers, the accurate establishment of a server power consumption model is imperative. Traditional server power consumption model, which rely solely on CPU utilization, often overlook the CPU temperature and operating statues inherent characteristics, resulting in substantial forecast errors. In response to this gap, a novel enhanced precision Power consumption Model based on Temperature estimation considering CPU working state (PMTC) model, is proposed based on the identification of CPU operating statuses. By incorporating temperature variables at the initial model construction phase, the PMTC model effectively captures the delayed dynamic characteristics of server power consumption changes that are influenced by the lagging adjustments in CPU core temperatures, thereby eliminating temperature-related modeling inaccuracies. In the subsequent power forecasting stage, the PMTC model accurately identifies specific CPU operating statues, which facilitate precise estimations of the CPU core temperature, thus circumventing the implementation challenges associated with additional measurements of temperature variables. To validate the efficacy of the proposed PMTC model against traditional server power consumption models, a dedicated server power consumption testbed was established. The results demonstrate that the PMTC model, by incorporating the temperature-related delayed dynamic characteristics of server power consumption change without augmenting the dimensions of input data, significantly reduces modeling calculation errors.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.