Enhancing solar irradiance prediction precision: A stacked ensemble learning-based correction paradigm

Bo Tian , Ningbo Wang , Yuanxin Lin , Shuangquan Shao
{"title":"Enhancing solar irradiance prediction precision: A stacked ensemble learning-based correction paradigm","authors":"Bo Tian ,&nbsp;Ningbo Wang ,&nbsp;Yuanxin Lin ,&nbsp;Shuangquan Shao","doi":"10.1016/j.nxener.2025.100306","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate solar irradiance prediction is critical for ensuring reliable control of solar energy systems. This study proposes a stacked ensemble learning model to correct daily solar irradiance forecasts derived from numerical weather prediction (NWP). The ensemble framework integrates 5 base models—multiple linear regression (MLR), artificial neural network (ANN), K-nearest neighbors (KNNs), random forest (RF), and support vector regression (SVR)—using stacking technology, with a meta-model applied for final prediction refinement. Experimental results demonstrate significant improvements over the original NWP forecasts: the corrected model reduces the mean absolute error (MAE) and root mean square error (RMSE) by 47% and 41%, respectively, while increasing the R² determination coefficient by 11%. The proposed approach effectively enhances the accuracy and reliability of traditional solar irradiance prediction models, offering a novel and practical solution for solar energy forecasting. This work holds substantial value for optimizing solar power system operations and advancing renewable energy utilization.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100306"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate solar irradiance prediction is critical for ensuring reliable control of solar energy systems. This study proposes a stacked ensemble learning model to correct daily solar irradiance forecasts derived from numerical weather prediction (NWP). The ensemble framework integrates 5 base models—multiple linear regression (MLR), artificial neural network (ANN), K-nearest neighbors (KNNs), random forest (RF), and support vector regression (SVR)—using stacking technology, with a meta-model applied for final prediction refinement. Experimental results demonstrate significant improvements over the original NWP forecasts: the corrected model reduces the mean absolute error (MAE) and root mean square error (RMSE) by 47% and 41%, respectively, while increasing the R² determination coefficient by 11%. The proposed approach effectively enhances the accuracy and reliability of traditional solar irradiance prediction models, offering a novel and practical solution for solar energy forecasting. This work holds substantial value for optimizing solar power system operations and advancing renewable energy utilization.
提高太阳辐照度预测精度:基于堆叠集成学习的校正范式
准确的太阳辐照度预测是确保太阳能系统可靠控制的关键。本文提出了一种叠综学习模型,用于校正数值天气预报(NWP)的日太阳辐照度预报。该集成框架使用堆叠技术集成了5个基本模型——多元线性回归(MLR)、人工神经网络(ANN)、k近邻(KNNs)、随机森林(RF)和支持向量回归(SVR),并使用元模型进行最终预测精化。实验结果表明,与原始NWP预测相比,修正模型的平均绝对误差(MAE)和均方根误差(RMSE)分别降低了47%和41%,而R²决定系数提高了11%。该方法有效地提高了传统太阳辐照度预测模型的精度和可靠性,为太阳能预测提供了一种新颖实用的解决方案。这项工作对优化太阳能发电系统运行和推进可再生能源利用具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信