Purity of entangled photon pairs in a semiconductor–superconductor heterostructure in the presence of both Rashba and Dresselhaus SOCs

IF 5.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zahra Saeedi, Heshmatollah Yavari
{"title":"Purity of entangled photon pairs in a semiconductor–superconductor heterostructure in the presence of both Rashba and Dresselhaus SOCs","authors":"Zahra Saeedi,&nbsp;Heshmatollah Yavari","doi":"10.1016/j.materresbull.2025.113537","DOIUrl":null,"url":null,"abstract":"<div><div>Angular momentum entanglement in the superconducting state as an intrinsic property of superconductors, inducing the polarization-entangled photons, has recently been proposed as a natural source for the generation of entangled photons in P–N–S heterostructures. Breaking the structure inversion symmetry (SIS) and bulk inversion symmetry (BIS) due to Rashba and Dresselhaus spin orbit couplings (SOCs) lead to combination of singlet and triplet superconducting. We provide a general investigation of the effects of Rashba and Dresselhaus SOCs, the contribution of the components of the mixed parity gap function as well as singlet and triplet channels and spatial characteristics of the structure (<span><math><mi>θ</mi></math></span>, <span><math><mi>φ</mi></math></span>) on the purity of entangled photons. It is shown that the spin singlet pairing plays an important role to enhance the production of entangled pairs, and specifically, in the mixed state, <span><math><mrow><mi>s</mi><mo>+</mo><mi>p</mi></mrow></math></span> pairing exhibits the highest purity at <span><math><mrow><mi>θ</mi><mo>=</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>θ</mi><mo>=</mo><mi>π</mi></mrow></math></span>. For pure singlet pairing the highest purity is obtained from conventional <span><math><mi>s</mi></math></span>-wave pairing. Furthermore pure triplet pairing exhibits maximum purity of entangled photons at <span><math><mrow><mi>φ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>π</mi></mrow></math></span> for equal-Rashba–Dresselhaus SOCs case. The results of this article open the window for designing systems including superconductors and semiconductors in order to produce entangled photons.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"191 ","pages":"Article 113537"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002454","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Angular momentum entanglement in the superconducting state as an intrinsic property of superconductors, inducing the polarization-entangled photons, has recently been proposed as a natural source for the generation of entangled photons in P–N–S heterostructures. Breaking the structure inversion symmetry (SIS) and bulk inversion symmetry (BIS) due to Rashba and Dresselhaus spin orbit couplings (SOCs) lead to combination of singlet and triplet superconducting. We provide a general investigation of the effects of Rashba and Dresselhaus SOCs, the contribution of the components of the mixed parity gap function as well as singlet and triplet channels and spatial characteristics of the structure (θ, φ) on the purity of entangled photons. It is shown that the spin singlet pairing plays an important role to enhance the production of entangled pairs, and specifically, in the mixed state, s+p pairing exhibits the highest purity at θ=0 and θ=π. For pure singlet pairing the highest purity is obtained from conventional s-wave pairing. Furthermore pure triplet pairing exhibits maximum purity of entangled photons at φ=0,π for equal-Rashba–Dresselhaus SOCs case. The results of this article open the window for designing systems including superconductors and semiconductors in order to produce entangled photons.
在Rashba和Dresselhaus soc存在下半导体-超导体异质结构中纠缠光子对的纯度
超导态的角动量纠缠作为超导体的固有特性,诱导偏振纠缠光子,最近被提出作为P-N-S异质结构中产生纠缠光子的自然来源。由于Rashba和Dresselhaus自旋轨道耦合(SOCs)打破了结构反转对称(SIS)和体反转对称(BIS),导致了单重态和三重态超导的结合。我们对Rashba和Dresselhaus soc的影响、混合宇称隙函数的分量以及单重态和三重态通道的贡献以及结构(θ, φ)的空间特性对纠缠光子纯度的影响进行了全面的研究。结果表明,自旋单重态对提高纠缠对的产生起着重要作用,特别是在混合态中,s+p对在θ=0和θ=π处的纯度最高。对于纯单线态配对,常规s波配对的纯度最高。此外,对于等rashba - dresselhaus晶体,纯三重态配对在φ=0,π处显示出最大的纠缠光子纯度。本文的结果为设计包括超导体和半导体在内的系统以产生纠缠光子打开了窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信