On refined Vogel's universality

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Liudmila Bishler , Andrei Mironov
{"title":"On refined Vogel's universality","authors":"Liudmila Bishler ,&nbsp;Andrei Mironov","doi":"10.1016/j.physletb.2025.139596","DOIUrl":null,"url":null,"abstract":"<div><div>In accordance with P. Vogel, a set of algebra structures in Chern-Simons theory can be made universal, independent of a particular family of simple Lie algebras. In particular, this means that various quantities in the adjoint representations of these simple Lie algebras such as dimensions and quantum dimensions, Racah coefficients, etc. are simple rational functions of two parameters on Vogel's plane, giving three lines associated with <em>sl</em>, <span><math><mi>s</mi><mi>o</mi><mo>/</mo><mi>s</mi><mi>p</mi></math></span> and exceptional algebras correspondingly. By analyzing the partition function of refined of Chern-Simons theory, it was suggested earlier that the refinement may preserve the universality for simply laced algebras. Here we support this conjecture by analyzing the Macdonald dimensions, i.e. values of Macdonald polynomials at <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>ρ</mi></mrow></msup></math></span>, where <em>ρ</em> is the Weyl vector: there is a universality formula that describes these dimensions for the simply laced algebras as a function on the Vogel's plane.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"867 ","pages":"Article 139596"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325003570","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In accordance with P. Vogel, a set of algebra structures in Chern-Simons theory can be made universal, independent of a particular family of simple Lie algebras. In particular, this means that various quantities in the adjoint representations of these simple Lie algebras such as dimensions and quantum dimensions, Racah coefficients, etc. are simple rational functions of two parameters on Vogel's plane, giving three lines associated with sl, so/sp and exceptional algebras correspondingly. By analyzing the partition function of refined of Chern-Simons theory, it was suggested earlier that the refinement may preserve the universality for simply laced algebras. Here we support this conjecture by analyzing the Macdonald dimensions, i.e. values of Macdonald polynomials at qρ, where ρ is the Weyl vector: there is a universality formula that describes these dimensions for the simply laced algebras as a function on the Vogel's plane.
论改进的傅高义的普遍性
根据P. Vogel, chen - simons理论中的一组代数结构可以是普适的,独立于某一类简单李代数。特别地,这意味着这些简单李代数的伴随表示中的各种量,如维数和量子维数、Racah系数等,是Vogel平面上两个参数的简单有理数函数,从而给出与sl、so/sp和例外代数相对应的三条直线。通过分析改进后的chen - simons理论的配分函数,提出了改进后的chen - simons理论可以保持简系代数的普适性。在这里,我们通过分析麦克唐纳维来支持这一猜想,即麦克唐纳多项式在qρ处的值,其中ρ是Weyl向量:有一个普适公式将简单代数的这些维描述为Vogel平面上的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信