First-principles prediction of the physical properties of the Al-based hydride XAlH5 (X = Ca, Sr, Ba) for hydrogen storage applications

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lixian Yang , Yong Cao , Linjie Miao , Nan Qu
{"title":"First-principles prediction of the physical properties of the Al-based hydride XAlH5 (X = Ca, Sr, Ba) for hydrogen storage applications","authors":"Lixian Yang ,&nbsp;Yong Cao ,&nbsp;Linjie Miao ,&nbsp;Nan Qu","doi":"10.1016/j.vacuum.2025.114422","DOIUrl":null,"url":null,"abstract":"<div><div>To identify potential hydrogen storage materials, this study uses first-principles calculations to predict the thermodynamic, storage, mechanical, electronic, optical, and dynamic properties of aluminum-based hydride XAlH<sub>5</sub> (X = Ca, Sr, Ba). The negative formation enthalpy of XAlH<sub>5</sub> (X = Ca, Sr, Ba) hydrides, along with Born stability criteria and phonon dispersion analysis, indicates their thermodynamic, mechanical, and dynamic stability. Predictions for the B/G ratio and Poisson's ratio reveal that CaAlH<sub>5</sub> is ductile, whereas SrAlH<sub>5</sub> and BaAlH<sub>5</sub> are brittle materials. Electronic property predictions show that aluminum-based hydride XAlH<sub>5</sub> (X = Ca, Sr, Ba) are semiconductors. Bonding analysis reveals that CaAlH<sub>5</sub> contains only ionic bonds, while SrAlH<sub>5</sub> and BaAlH<sub>5</sub> include both covalent and ionic bonds. CaAlH<sub>5</sub>, with the smallest band gap, facilitates electron transitions between the valence and conduction bands, making it ideal for hydrogen release. The predicted weight hydrogen storage capacities for XAlH<sub>5</sub> (X = Ca, Sr, Ba) hydrides are 6.99 wt% for CaAlH<sub>5</sub>, 4.21 wt% for SrAlH<sub>5</sub>, and 2.98 wt% for BaAlH<sub>5</sub>, with hydrogen desorption temperatures of 277K, 297K, and 333K. Among the XAlH<sub>5</sub> (X = Ca, Sr, Ba) hydrides, CaAlH<sub>5</sub> demonstrates the best hydrogen storage potential and should be considered a promising material for future hydrogen storage applications.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"239 ","pages":"Article 114422"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X25004129","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To identify potential hydrogen storage materials, this study uses first-principles calculations to predict the thermodynamic, storage, mechanical, electronic, optical, and dynamic properties of aluminum-based hydride XAlH5 (X = Ca, Sr, Ba). The negative formation enthalpy of XAlH5 (X = Ca, Sr, Ba) hydrides, along with Born stability criteria and phonon dispersion analysis, indicates their thermodynamic, mechanical, and dynamic stability. Predictions for the B/G ratio and Poisson's ratio reveal that CaAlH5 is ductile, whereas SrAlH5 and BaAlH5 are brittle materials. Electronic property predictions show that aluminum-based hydride XAlH5 (X = Ca, Sr, Ba) are semiconductors. Bonding analysis reveals that CaAlH5 contains only ionic bonds, while SrAlH5 and BaAlH5 include both covalent and ionic bonds. CaAlH5, with the smallest band gap, facilitates electron transitions between the valence and conduction bands, making it ideal for hydrogen release. The predicted weight hydrogen storage capacities for XAlH5 (X = Ca, Sr, Ba) hydrides are 6.99 wt% for CaAlH5, 4.21 wt% for SrAlH5, and 2.98 wt% for BaAlH5, with hydrogen desorption temperatures of 277K, 297K, and 333K. Among the XAlH5 (X = Ca, Sr, Ba) hydrides, CaAlH5 demonstrates the best hydrogen storage potential and should be considered a promising material for future hydrogen storage applications.
储氢用铝基氢化物XAlH5 (X = Ca, Sr, Ba)物理性质的第一性原理预测
为了确定潜在的储氢材料,本研究使用第一性原理计算来预测铝基氢化物XAlH5 (X = Ca, Sr, Ba)的热力学,存储,机械,电子,光学和动态特性。XAlH5 (X = Ca, Sr, Ba)氢化物的负生成焓、Born稳定性判据和声子色散分析表明了它们的热力学、力学和动力学稳定性。对B/G比和泊松比的预测表明,CaAlH5是延展性的,而SrAlH5和BaAlH5是脆性材料。电子性质预测表明,铝基氢化物XAlH5 (X = Ca, Sr, Ba)是半导体。化学键分析表明,CaAlH5仅含有离子键,而SrAlH5和BaAlH5同时含有共价键和离子键。CaAlH5带隙最小,有利于电子在价带和导带之间的跃迁,是氢释放的理想材料。在解吸温度分别为277K、297K和333K时,XAlH5 (X = Ca、Sr、Ba)氢化物的预测储氢量分别为:CaAlH5为6.99 wt%、SrAlH5为4.21 wt%和BaAlH5为2.98 wt%。在XAlH5 (X = Ca, Sr, Ba)氢化物中,CaAlH5表现出最好的储氢潜力,应该被认为是未来储氢应用的有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信