Multi-strategy alpha evolution optimization for constrained parameter estimation in Proton Exchange Membrane Fuel Cells

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Salih Berkan Aydemir , Funda Kutlu Onay , Korhan Ökten
{"title":"Multi-strategy alpha evolution optimization for constrained parameter estimation in Proton Exchange Membrane Fuel Cells","authors":"Salih Berkan Aydemir ,&nbsp;Funda Kutlu Onay ,&nbsp;Korhan Ökten","doi":"10.1016/j.enconman.2025.119917","DOIUrl":null,"url":null,"abstract":"<div><div>PEMFCs (Proton Exchange Membrane Fuel Cells) are devices widely used today in hydrogen power generation and energy storage systems. PEMFC parameter estimation is crucial for optimizing fuel cell performance, reducing costs, and ensuring system reliability. Accurate estimation allows for better modeling and simulation, and minimizes the need for expensive and time-consuming experiments. The study focuses on a multistrategy alpha evolution algorithm (MSAE) aimed at improving the accuracy of parameter estimation in PEMFCs. The MSAE features enhancements over the traditional alpha evolution method, such as employing a Halton sequence to create the initial population and using a fitness-distance balance technique for selecting appropriate candidate solutions. To assess the coherence and reliability of MSAE, a comparison is made with existing techniques in the literature in three distinct cases. In Case I, there are no parameter restrictions, reflecting conventional parameter estimation approaches. Case II introduces restrictions among the parameters to evaluate consistency, while Case III investigates consistency with varying limits. The results are presented using the sum of squared error (SSE) for comparison with other upcoming algorithms. Considering that SSE differences may be very small in some cases, additional error measures are also used for the evaluation. The results demonstrate that MSAE exceeds other competitive metaheuristic algorithms by achieving lower error rates, including SSE, mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE) and relative error (RE), while also ensuring highly compatible parameter estimations.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"339 ","pages":"Article 119917"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425004418","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

PEMFCs (Proton Exchange Membrane Fuel Cells) are devices widely used today in hydrogen power generation and energy storage systems. PEMFC parameter estimation is crucial for optimizing fuel cell performance, reducing costs, and ensuring system reliability. Accurate estimation allows for better modeling and simulation, and minimizes the need for expensive and time-consuming experiments. The study focuses on a multistrategy alpha evolution algorithm (MSAE) aimed at improving the accuracy of parameter estimation in PEMFCs. The MSAE features enhancements over the traditional alpha evolution method, such as employing a Halton sequence to create the initial population and using a fitness-distance balance technique for selecting appropriate candidate solutions. To assess the coherence and reliability of MSAE, a comparison is made with existing techniques in the literature in three distinct cases. In Case I, there are no parameter restrictions, reflecting conventional parameter estimation approaches. Case II introduces restrictions among the parameters to evaluate consistency, while Case III investigates consistency with varying limits. The results are presented using the sum of squared error (SSE) for comparison with other upcoming algorithms. Considering that SSE differences may be very small in some cases, additional error measures are also used for the evaluation. The results demonstrate that MSAE exceeds other competitive metaheuristic algorithms by achieving lower error rates, including SSE, mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE) and relative error (RE), while also ensuring highly compatible parameter estimations.
质子交换膜燃料电池约束参数估计的多策略演化优化
质子交换膜燃料电池(pemfc)是目前广泛应用于氢发电和储能系统的器件。PEMFC参数估计对于优化燃料电池性能、降低成本和确保系统可靠性至关重要。准确的估计允许更好的建模和仿真,并尽量减少对昂贵和耗时的实验的需要。研究了一种多策略α进化算法(MSAE),旨在提高pemfc中参数估计的准确性。与传统的alpha进化方法相比,MSAE具有增强功能,例如使用Halton序列来创建初始种群,并使用适应度-距离平衡技术来选择合适的候选解。为了评估MSAE的一致性和可靠性,在三个不同的案例中,与文献中现有的技术进行了比较。在情形1中,没有参数限制,反映了传统的参数估计方法。案例II引入参数之间的限制来评估一致性,而案例III以不同的限制考察一致性。结果使用平方误差和(SSE)与其他即将推出的算法进行比较。考虑到SSE差异在某些情况下可能非常小,因此还使用了额外的误差度量来进行评估。结果表明,MSAE优于其他竞争的元启发式算法,实现了更低的错误率,包括SSE、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和相对误差(RE),同时还确保了高度兼容的参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信