Business digitalization in Italy: A comprehensive analysis using supplementary fuzzy set approach

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ilaria Benedetti, Federico Crescenzi, Tiziana Laureti, Niccolò Salvini
{"title":"Business digitalization in Italy: A comprehensive analysis using supplementary fuzzy set approach","authors":"Ilaria Benedetti,&nbsp;Federico Crescenzi,&nbsp;Tiziana Laureti,&nbsp;Niccolò Salvini","doi":"10.1016/j.bdr.2025.100538","DOIUrl":null,"url":null,"abstract":"<div><div>In an era where digital technologies such as AI, cloud computing and IoT are reshaping global business dynamics, the digital transformation of enterprises has become a pivotal factor for maintaining competitive advantage. This paper provides an in-depth analysis of the digitalization process among Italian firms, leveraging data from the ISTAT ICT survey. Using a fuzzy set approach, we develop a refined index to measure technological deprivation across multiple dimensions, providing a detailed understanding of how digitalization is adopted at the firm level. The results indicate a moderate level of technological development among firms. The dimension related to online sales emerges as the most underdeveloped, highlighting it as a critical area for improvement for Italian companies and underscoring the need for targeted policy interventions to bridge these digital gaps. Moreover, the analysis reveals significant disparities across sectors, geographic areas, and firm sizes, with smaller enterprises and those in certain regions exhibiting lower levels of digital adoption. Our study underscores the utility of the fuzzy set methodology for analyzing high-dimensional big data and provides actionable insights for enhancing digital adoption among firms in Italy.</div></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"41 ","pages":"Article 100538"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579625000334","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In an era where digital technologies such as AI, cloud computing and IoT are reshaping global business dynamics, the digital transformation of enterprises has become a pivotal factor for maintaining competitive advantage. This paper provides an in-depth analysis of the digitalization process among Italian firms, leveraging data from the ISTAT ICT survey. Using a fuzzy set approach, we develop a refined index to measure technological deprivation across multiple dimensions, providing a detailed understanding of how digitalization is adopted at the firm level. The results indicate a moderate level of technological development among firms. The dimension related to online sales emerges as the most underdeveloped, highlighting it as a critical area for improvement for Italian companies and underscoring the need for targeted policy interventions to bridge these digital gaps. Moreover, the analysis reveals significant disparities across sectors, geographic areas, and firm sizes, with smaller enterprises and those in certain regions exhibiting lower levels of digital adoption. Our study underscores the utility of the fuzzy set methodology for analyzing high-dimensional big data and provides actionable insights for enhancing digital adoption among firms in Italy.
意大利商业数字化:利用补充模糊集方法的综合分析
在人工智能、云计算、物联网等数字技术重塑全球商业格局的时代,企业的数字化转型已成为保持竞争优势的关键因素。本文利用来自ISTAT ICT调查的数据,对意大利企业的数字化进程进行了深入分析。使用模糊集方法,我们开发了一个改进的指数来衡量多个维度的技术剥夺,提供了对企业层面如何采用数字化的详细理解。结果表明,各企业的技术发展水平处于中等水平。与在线销售相关的维度是最不发达的,这突出表明这是意大利公司需要改进的关键领域,并强调需要有针对性的政策干预来弥合这些数字差距。此外,分析还揭示了行业、地理区域和公司规模之间的显著差异,较小的企业和某些地区的企业表现出较低的数字采用水平。我们的研究强调了模糊集方法在分析高维大数据方面的效用,并为提高意大利企业的数字化应用提供了可行的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data Research
Big Data Research Computer Science-Computer Science Applications
CiteScore
8.40
自引率
3.00%
发文量
0
期刊介绍: The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic. The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信