"Turn-on" aptamer-immune lateral flow assays for the detection of small molecule targets based on CHA-assisted and CRISPR/Cas12a mediated signal transduction and amplification
{"title":"\"Turn-on\" aptamer-immune lateral flow assays for the detection of small molecule targets based on CHA-assisted and CRISPR/Cas12a mediated signal transduction and amplification","authors":"Haowei Dong , Yifei Qin , Pengwei Zhang , Liwen Lv , Chunlei Yu , Peng Jia , Jicheng Zhao , Fangling Du , Yemin Guo , Xia Sun","doi":"10.1016/j.bios.2025.117593","DOIUrl":null,"url":null,"abstract":"<div><div>Lateral flow assays (LFAs) have emerged as crucial tools for on-site food safety detection due to their simple operation and intuitive detection results. Nevertheless, LFAs for small molecule targets such as pesticides often present a \"Turn-off\" signal output, which leads to their low sensitivity and the risk of false positives. In this study, a CRISPR/Cas12a system-mediated strategy was employed to convert aptamer signals into the signals of immune LFAs, achieving a \"Turn-on\" signal output for highly sensitive detection of small molecule targets. The binding of aptamers to targets released the trigger sequence to initiate the catalytic hairpin assembly (CHA) reaction, generating double-stranded DNA, which subsequently activated the CRISPR/Cas12a system to cleave the FAM-labeled Reporter. Eventually, the \"Turn-on\" visual output of the signal was realized through an anti-6-FAM immune LFAs. The experiment optimized the sample pool preparation, CHA reaction conditions, CRISPR/Cas12a activation parameters, and the assembly process of the LFAs. The limit of detection for procymidone was as low as 0.015 ng/mL, which was 52.67 times more sensitive than those of conventional aptamer-based LFAs without signal amplification strategies. This method exhibits high specificity for procymidone and a recovery rate ranging from 94.00% to 104.20% in vegetable samples, demonstrating excellent stability and practicability.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"285 ","pages":"Article 117593"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325004671","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lateral flow assays (LFAs) have emerged as crucial tools for on-site food safety detection due to their simple operation and intuitive detection results. Nevertheless, LFAs for small molecule targets such as pesticides often present a "Turn-off" signal output, which leads to their low sensitivity and the risk of false positives. In this study, a CRISPR/Cas12a system-mediated strategy was employed to convert aptamer signals into the signals of immune LFAs, achieving a "Turn-on" signal output for highly sensitive detection of small molecule targets. The binding of aptamers to targets released the trigger sequence to initiate the catalytic hairpin assembly (CHA) reaction, generating double-stranded DNA, which subsequently activated the CRISPR/Cas12a system to cleave the FAM-labeled Reporter. Eventually, the "Turn-on" visual output of the signal was realized through an anti-6-FAM immune LFAs. The experiment optimized the sample pool preparation, CHA reaction conditions, CRISPR/Cas12a activation parameters, and the assembly process of the LFAs. The limit of detection for procymidone was as low as 0.015 ng/mL, which was 52.67 times more sensitive than those of conventional aptamer-based LFAs without signal amplification strategies. This method exhibits high specificity for procymidone and a recovery rate ranging from 94.00% to 104.20% in vegetable samples, demonstrating excellent stability and practicability.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.