Xinle Tong , Lichao Fan , Mingda Wang , Jingjing Guo , Lei Bao , Lingzhi Hui , Yichao Chen , Zhengrong Li , Shuai Qian , Xiaodong Xu , Lin Ma , Xiangtian Meng , Xuechen Zhang , Kazem Zamanian , Manoj Shukla , Xiaohong Tian , Maxim Dorodnikov
{"title":"Anthropogenic land-use driven changes in soil stoichiometry reduce microbial carbon use efficiency","authors":"Xinle Tong , Lichao Fan , Mingda Wang , Jingjing Guo , Lei Bao , Lingzhi Hui , Yichao Chen , Zhengrong Li , Shuai Qian , Xiaodong Xu , Lin Ma , Xiangtian Meng , Xuechen Zhang , Kazem Zamanian , Manoj Shukla , Xiaohong Tian , Maxim Dorodnikov","doi":"10.1016/j.agee.2025.109766","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial carbon use efficiency (CUE) is a crucial parameter for characterizing soil organic carbon (C) dynamics. However, the response of microbial CUE to land-use change and the underlying mechanisms remain unclear. In this study, we estimated CUE using a biogeochemical equilibrium model across three paired natural and anthropogenic land-use systems. We found that the conversion from natural to anthropogenic ecosystems reduces CUE and increases microbial C limitation. Through a combination of variation partitioning modeling, random forest analysis, and partial least squares path modeling, we showed that elemental stoichiometry was up to 4.2 times more important in determining CUE than soil physiochemical properties and microbial physiological characteristics, and the microbial C to nitrogen ratio had a key positive effect on CUE. Therefore, the role of microbial eco-physiological traits (e.g., fungi:bacteria) in improving CUE and thus mitigating C loss from anthropogenic ecosystems requires consideration in land management strategies for C sequestration.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"392 ","pages":"Article 109766"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture, Ecosystems & Environment","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167880925002981","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial carbon use efficiency (CUE) is a crucial parameter for characterizing soil organic carbon (C) dynamics. However, the response of microbial CUE to land-use change and the underlying mechanisms remain unclear. In this study, we estimated CUE using a biogeochemical equilibrium model across three paired natural and anthropogenic land-use systems. We found that the conversion from natural to anthropogenic ecosystems reduces CUE and increases microbial C limitation. Through a combination of variation partitioning modeling, random forest analysis, and partial least squares path modeling, we showed that elemental stoichiometry was up to 4.2 times more important in determining CUE than soil physiochemical properties and microbial physiological characteristics, and the microbial C to nitrogen ratio had a key positive effect on CUE. Therefore, the role of microbial eco-physiological traits (e.g., fungi:bacteria) in improving CUE and thus mitigating C loss from anthropogenic ecosystems requires consideration in land management strategies for C sequestration.
期刊介绍:
Agriculture, Ecosystems and Environment publishes scientific articles dealing with the interface between agroecosystems and the natural environment, specifically how agriculture influences the environment and how changes in that environment impact agroecosystems. Preference is given to papers from experimental and observational research at the field, system or landscape level, from studies that enhance our understanding of processes using data-based biophysical modelling, and papers that bridge scientific disciplines and integrate knowledge. All papers should be placed in an international or wide comparative context.