{"title":"Exploring biogenic/ green solvents on the sustainable development of metal organic frameworks for waste water treatment","authors":"Rajeev Agrawal , Urmila Chakraborty , Saurabh Singh","doi":"10.1016/j.crgsc.2025.100462","DOIUrl":null,"url":null,"abstract":"<div><div>The application of metal organic frameworks (MOFs) in the field of wastewater treatment has gained significant scientific focus in the recent years. However, the use of hazardous solvents during the synthesis of MOFs restrains their large scale synthesis and industrial level applications. Thus green and safer solvents are required, which can efficiently replace the toxic solvents conventionally used during the synthesis of MOFs. The application of cleaner green solvents can cause drastic alleviation in the toxic wastes produced from the industrial scale synthesis of MOFs. Many green solvents (bio-derived and non-bio-derived) have found their applications in different areas of scientific research. Green solvents, such as water, super critical CO<sub>2</sub>, ionic liquids, deep-eutectic solvents, certain alcohols, gamma-valerolactone and cyrene have been efficiently explored for the synthesis of different types of MOFs suitable for waste water treatment. This review highlights the application of these solvents for the engineering of MOFs for water treatment. The research works from the last eight years (2018–2025) involving the use of suitable biogenic/green solvents for the synthesis of MOFs specifically applicable for water/wastewater treatment applications have been reviewed intricately for the first time. The challenges associated with the application of these solvents have been presented in detail. The recent strategies adopted by the researchers to overcome the existing challenges and obtain high quality MOFs in these solvents have been discussed.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"10 ","pages":"Article 100462"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086525000189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The application of metal organic frameworks (MOFs) in the field of wastewater treatment has gained significant scientific focus in the recent years. However, the use of hazardous solvents during the synthesis of MOFs restrains their large scale synthesis and industrial level applications. Thus green and safer solvents are required, which can efficiently replace the toxic solvents conventionally used during the synthesis of MOFs. The application of cleaner green solvents can cause drastic alleviation in the toxic wastes produced from the industrial scale synthesis of MOFs. Many green solvents (bio-derived and non-bio-derived) have found their applications in different areas of scientific research. Green solvents, such as water, super critical CO2, ionic liquids, deep-eutectic solvents, certain alcohols, gamma-valerolactone and cyrene have been efficiently explored for the synthesis of different types of MOFs suitable for waste water treatment. This review highlights the application of these solvents for the engineering of MOFs for water treatment. The research works from the last eight years (2018–2025) involving the use of suitable biogenic/green solvents for the synthesis of MOFs specifically applicable for water/wastewater treatment applications have been reviewed intricately for the first time. The challenges associated with the application of these solvents have been presented in detail. The recent strategies adopted by the researchers to overcome the existing challenges and obtain high quality MOFs in these solvents have been discussed.