{"title":"Chirp sensitivity and vowel coding in the inferior colliculus","authors":"Paul W. Mitchell , Laurel H. Carney","doi":"10.1016/j.heares.2025.109307","DOIUrl":null,"url":null,"abstract":"<div><div>The inferior colliculus (IC) is an important brain region to understand neural encoding of complex sounds due to its diverse sound-feature sensitivities, including features that are affected by peripheral nonlinearities. Recent physiological studies in rabbit IC demonstrate that IC neurons are sensitive to chirp direction and velocity. Fast spectrotemporal changes, known as chirps, are contained within pitch-periods of natural vowels. Here, we use a combination of physiological and modeling strategies to assess the impact of chirp-sensitivity on vowel coding. Neural responses to vowel stimuli were recorded and vowel-token identification was evaluated based on average-rate and spike-timing metrics. Response timing was found to result in higher identification accuracy than rate. Additionally, rate bias towards low-velocity chirps, independent of chirp direction, was shown to correlate with higher vowel-identification accuracy based on timing. Also, direction bias in response to chirps of high velocity was shown to correlate with vowel-identification accuracy based on both rate and timing. Responses to natural-vowel tokens of individual neurons were simulated using an IC model with controllable chirp sensitivity. Responses of upward-biased, downward-biased, and non-selective model neurons were generated. Manipulating chirp sensitivity influenced response profiles across natural vowel tokens and vowel discrimination based on model-neuron responses. More work is needed to match all features of model responses to those of physiological recordings.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"463 ","pages":"Article 109307"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037859552500125X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inferior colliculus (IC) is an important brain region to understand neural encoding of complex sounds due to its diverse sound-feature sensitivities, including features that are affected by peripheral nonlinearities. Recent physiological studies in rabbit IC demonstrate that IC neurons are sensitive to chirp direction and velocity. Fast spectrotemporal changes, known as chirps, are contained within pitch-periods of natural vowels. Here, we use a combination of physiological and modeling strategies to assess the impact of chirp-sensitivity on vowel coding. Neural responses to vowel stimuli were recorded and vowel-token identification was evaluated based on average-rate and spike-timing metrics. Response timing was found to result in higher identification accuracy than rate. Additionally, rate bias towards low-velocity chirps, independent of chirp direction, was shown to correlate with higher vowel-identification accuracy based on timing. Also, direction bias in response to chirps of high velocity was shown to correlate with vowel-identification accuracy based on both rate and timing. Responses to natural-vowel tokens of individual neurons were simulated using an IC model with controllable chirp sensitivity. Responses of upward-biased, downward-biased, and non-selective model neurons were generated. Manipulating chirp sensitivity influenced response profiles across natural vowel tokens and vowel discrimination based on model-neuron responses. More work is needed to match all features of model responses to those of physiological recordings.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.