Dynamical bifurcation point of a stochastic single-species model

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Qingyang Hu, Jingliang Lv, Xiaoling Zou
{"title":"Dynamical bifurcation point of a stochastic single-species model","authors":"Qingyang Hu,&nbsp;Jingliang Lv,&nbsp;Xiaoling Zou","doi":"10.1016/j.aml.2025.109596","DOIUrl":null,"url":null,"abstract":"<div><div>A stochastic single-species model subject to additive Allee effects and nonlinear stochastic perturbation is proposed and analyzed. First we demonstrate that this model has a unique positive solution for any positive initial value. Then, by analyzing the stability of invariant measures, we testify that there is a unique dynamical bifurcation point <span><math><mi>Λ</mi></math></span> to the equation, the sign of <span><math><mi>Λ</mi></math></span> determines the dynamical properties of the equation, and the density function of the invariant measure can be expressed. In the end, numerical simulations are introduced to verify the theoretical results.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"170 ","pages":"Article 109596"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001466","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A stochastic single-species model subject to additive Allee effects and nonlinear stochastic perturbation is proposed and analyzed. First we demonstrate that this model has a unique positive solution for any positive initial value. Then, by analyzing the stability of invariant measures, we testify that there is a unique dynamical bifurcation point Λ to the equation, the sign of Λ determines the dynamical properties of the equation, and the density function of the invariant measure can be expressed. In the end, numerical simulations are introduced to verify the theoretical results.
随机单物种模型的动力分岔点
提出并分析了考虑加性Allee效应和非线性随机扰动的随机单物种模型。首先证明了该模型对任意正初值都有唯一正解。然后,通过分析不变测度的稳定性,证明了方程存在唯一的动力分岔点Λ, Λ的符号决定了方程的动力性质,并且可以表示不变测度的密度函数。最后通过数值模拟对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信