On {1,2}-distance-balancedness of generalized Petersen graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Gang Ma , Jianfeng Wang , Sandi Klavžar
{"title":"On {1,2}-distance-balancedness of generalized Petersen graphs","authors":"Gang Ma ,&nbsp;Jianfeng Wang ,&nbsp;Sandi Klavžar","doi":"10.1016/j.disc.2025.114579","DOIUrl":null,"url":null,"abstract":"<div><div>A connected graph <em>G</em> of diameter <span><math><mrow><mi>diam</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>ℓ</mi></math></span> is <em>ℓ</em>-distance-balanced if <span><math><mo>|</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>y</mi><mi>x</mi></mrow></msub><mo>|</mo></math></span> for every <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mi>ℓ</mi></math></span>, where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub></math></span> is the set of vertices of <em>G</em> that are closer to <em>x</em> than to <em>y</em>. It is proved that if <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>&gt;</mo><mi>k</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>, then the generalized Petersen graph <span><math><mi>G</mi><mi>P</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is not distance-balanced and that <span><math><mi>G</mi><mi>P</mi><mo>(</mo><mi>k</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is distance-balanced. It is also proved that if <span><math><mi>k</mi><mo>≥</mo><mn>6</mn></math></span> where <em>k</em> is even, and <span><math><mi>n</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>9</mn><mi>k</mi></math></span>, or if <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span> where <em>k</em> is odd, and <span><math><mi>n</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mfrac><mrow><mn>31</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>k</mi></math></span>, then <span><math><mi>G</mi><mi>P</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is not 2-distance-balanced.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114579"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001876","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A connected graph G of diameter diam(G) is -distance-balanced if |Wxy|=|Wyx| for every x,yV(G) with dG(x,y)=, where Wxy is the set of vertices of G that are closer to x than to y. It is proved that if k3 and n>k(k+2), then the generalized Petersen graph GP(n,k) is not distance-balanced and that GP(k(k+2),k) is distance-balanced. It is also proved that if k6 where k is even, and n>12k334k2+9k, or if k5 where k is odd, and n>12k314k2+314k, then GP(n,k) is not 2-distance-balanced.
广义Petersen图的{1,2}-距离平衡性
对于每一个x,y∈V(G), dG(x,y)= r,当|Wxy|=|Wyx|,其中Wxy是G中离x比离y更近的顶点的集合。证明了如果k≥3且n>;k(k+2),则广义Petersen图GP(n,k)不距离平衡,GP(k(k+2),k)是距离平衡的。还证明了如果k≥6且k为偶数,且n>;12k3−34k2+9k,或者k≥5且k为奇数,且n>;12k3−14k2+314k,则GP(n,k)不是2-距离平衡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信