{"title":"On {1,2}-distance-balancedness of generalized Petersen graphs","authors":"Gang Ma , Jianfeng Wang , Sandi Klavžar","doi":"10.1016/j.disc.2025.114579","DOIUrl":null,"url":null,"abstract":"<div><div>A connected graph <em>G</em> of diameter <span><math><mrow><mi>diam</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>ℓ</mi></math></span> is <em>ℓ</em>-distance-balanced if <span><math><mo>|</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>y</mi><mi>x</mi></mrow></msub><mo>|</mo></math></span> for every <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mi>ℓ</mi></math></span>, where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub></math></span> is the set of vertices of <em>G</em> that are closer to <em>x</em> than to <em>y</em>. It is proved that if <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>></mo><mi>k</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>, then the generalized Petersen graph <span><math><mi>G</mi><mi>P</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is not distance-balanced and that <span><math><mi>G</mi><mi>P</mi><mo>(</mo><mi>k</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is distance-balanced. It is also proved that if <span><math><mi>k</mi><mo>≥</mo><mn>6</mn></math></span> where <em>k</em> is even, and <span><math><mi>n</mi><mo>></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>9</mn><mi>k</mi></math></span>, or if <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span> where <em>k</em> is odd, and <span><math><mi>n</mi><mo>></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mfrac><mrow><mn>31</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>k</mi></math></span>, then <span><math><mi>G</mi><mi>P</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is not 2-distance-balanced.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114579"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001876","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A connected graph G of diameter is ℓ-distance-balanced if for every with , where is the set of vertices of G that are closer to x than to y. It is proved that if and , then the generalized Petersen graph is not distance-balanced and that is distance-balanced. It is also proved that if where k is even, and , or if where k is odd, and , then is not 2-distance-balanced.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.