A mathematical model of malaria transmission in conflict-affected regions and the implications on malaria interventions

IF 3.3 Q2 MULTIDISCIPLINARY SCIENCES
Mohamed Salah Alhaj , Farai Nyabadza
{"title":"A mathematical model of malaria transmission in conflict-affected regions and the implications on malaria interventions","authors":"Mohamed Salah Alhaj ,&nbsp;Farai Nyabadza","doi":"10.1016/j.sciaf.2025.e02746","DOIUrl":null,"url":null,"abstract":"<div><div>Malaria remains a life-threatening disease that is endemic to many African countries. Currently, several malaria-endemic areas are also experiencing armed conflicts, exacerbating the challenges of disease control. In this study, we develop a compartmental mathematical model to study malaria transmission in conflict-affected regions, incorporating both malaria control interventions and the effects of armed conflicts. We analyse the model by examining the positivity of solutions, the feasible region, equilibrium points and their stability, and the basic reproduction number, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Our findings indicate that the model exhibits a forward bifurcation, implying that malaria transmission can be eliminated when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span> but persists and spreads when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Through sensitivity analysis, we show that increasing malaria control interventions effectively reduce <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, whereas conflict-related parameters contribute to its rise. Additionally, we fit the model to World Health Organisation (WHO) data from three malaria-endemic countries, and we found a Root Mean Square Error between the data and model outcome with values 0.0015 for Nigeria, 0.0055 for Sudan, and 0.0016 for DRC. The simulations highlight the impact of intensified malaria control efforts and the detrimental influence of armed conflict on malaria transmission dynamics. The sensitivity analysis results align with numerical findings, reinforcing the significance of intervention strategies. Furthermore, our study underscores the role of asymptomatic carriers in sustaining malaria transmission. The results of this paper have huge implications in providing recommendations on malaria control in conflict-affected areas, emphasising the need for strengthened control measures and targeted interventions despite the conflicts.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"28 ","pages":"Article e02746"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625002169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria remains a life-threatening disease that is endemic to many African countries. Currently, several malaria-endemic areas are also experiencing armed conflicts, exacerbating the challenges of disease control. In this study, we develop a compartmental mathematical model to study malaria transmission in conflict-affected regions, incorporating both malaria control interventions and the effects of armed conflicts. We analyse the model by examining the positivity of solutions, the feasible region, equilibrium points and their stability, and the basic reproduction number, R0. Our findings indicate that the model exhibits a forward bifurcation, implying that malaria transmission can be eliminated when R0<1 but persists and spreads when R0>1. Through sensitivity analysis, we show that increasing malaria control interventions effectively reduce R0, whereas conflict-related parameters contribute to its rise. Additionally, we fit the model to World Health Organisation (WHO) data from three malaria-endemic countries, and we found a Root Mean Square Error between the data and model outcome with values 0.0015 for Nigeria, 0.0055 for Sudan, and 0.0016 for DRC. The simulations highlight the impact of intensified malaria control efforts and the detrimental influence of armed conflict on malaria transmission dynamics. The sensitivity analysis results align with numerical findings, reinforcing the significance of intervention strategies. Furthermore, our study underscores the role of asymptomatic carriers in sustaining malaria transmission. The results of this paper have huge implications in providing recommendations on malaria control in conflict-affected areas, emphasising the need for strengthened control measures and targeted interventions despite the conflicts.
受冲突影响地区疟疾传播的数学模型及其对疟疾干预措施的影响
疟疾仍然是一种威胁生命的疾病,在许多非洲国家流行。目前,一些疟疾流行地区也在经历武装冲突,加剧了控制疾病的挑战。在这项研究中,我们建立了一个分区数学模型来研究受冲突影响地区的疟疾传播,同时考虑了疟疾控制干预措施和武装冲突的影响。我们通过检验解的正性、可行域、平衡点及其稳定性和基本再现数R0来分析模型。我们的研究结果表明,该模型呈现前向分岔,这意味着当R0>;1时疟疾传播可以被消除,但当R0>;1时疟疾传播仍然存在并传播。通过敏感性分析,我们发现增加疟疾控制干预措施可以有效降低R0,而与冲突相关的参数有助于R0的上升。此外,我们将模型拟合到来自三个疟疾流行国家的世界卫生组织(WHO)数据中,我们发现数据与模型结果之间的均方根误差为0.0015,尼日利亚为0.0015,苏丹为0.0055,刚果民主共和国为0.0016。这些模拟突出了加强疟疾控制工作的影响以及武装冲突对疟疾传播动态的不利影响。敏感性分析结果与数值结果一致,强化了干预策略的意义。此外,我们的研究强调了无症状携带者在维持疟疾传播中的作用。这篇论文的结果在为受冲突影响地区的疟疾控制提供建议方面具有巨大的意义,强调了尽管存在冲突,仍需要加强控制措施和有针对性的干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信