{"title":"Optimizing competitor definitions for the sustainable management of dominant silver fir trees (Abies alba Mill.) in uneven-aged mixed Dinaric forests","authors":"Milan Kobal , Tom Levanič","doi":"10.1016/j.fecs.2025.100346","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding competition between trees is essential for sustainable forest management as interactions between trees in uneven-aged mixed forests play a key role in growth dynamics. This study investigated nine competition indices (CIs) for their suitability to model the effects of neighboring trees on silver fir (<em>Abies alba</em>) growth in Dinaric silver fir-European beech (<em>Fagus sylvatica</em>) forests. Although numerous competition indices have been developed, there is still limited consensus on their applicability in different forest types, especially in mature, structurally complex forest stands. The indices were evaluated using the adjusted coefficient of determination in a linear model wherein the volume growth of the last five years for 60 dominant silver fir trees was modeled as a function of tree volume and competition index. The results demonstrated that distance-dependent indices (e.g., the Hegyi height-distance competition and Rouvinen-Kuuluvainen diameter-distance competition indices), which consider the distance to competitors and their size, perform better than distance-independent indices. Using the optimization procedure in calculating the competition indices, only neighboring trees at a distance of up to 26-fold the diameter at breast height (DBH) of the selected tree (optimal search radius) and with a DBH of at least 20% of that of the target tree (optimal DBH) were considered competitors. Therefore, competition significantly influences the growth of dominant silver firs even in older age classes. The model based solely on tree volume explained 32.5% of the variability in volume growth, while the model that accounted for competition explained 64%. Optimizing the optimal search radius had a greater impact on model performance than optimizing the DBH threshold. This emphasizes the importance of balancing stand density and competition in silvicultural practice.</div></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"14 ","pages":"Article 100346"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562025000557","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding competition between trees is essential for sustainable forest management as interactions between trees in uneven-aged mixed forests play a key role in growth dynamics. This study investigated nine competition indices (CIs) for their suitability to model the effects of neighboring trees on silver fir (Abies alba) growth in Dinaric silver fir-European beech (Fagus sylvatica) forests. Although numerous competition indices have been developed, there is still limited consensus on their applicability in different forest types, especially in mature, structurally complex forest stands. The indices were evaluated using the adjusted coefficient of determination in a linear model wherein the volume growth of the last five years for 60 dominant silver fir trees was modeled as a function of tree volume and competition index. The results demonstrated that distance-dependent indices (e.g., the Hegyi height-distance competition and Rouvinen-Kuuluvainen diameter-distance competition indices), which consider the distance to competitors and their size, perform better than distance-independent indices. Using the optimization procedure in calculating the competition indices, only neighboring trees at a distance of up to 26-fold the diameter at breast height (DBH) of the selected tree (optimal search radius) and with a DBH of at least 20% of that of the target tree (optimal DBH) were considered competitors. Therefore, competition significantly influences the growth of dominant silver firs even in older age classes. The model based solely on tree volume explained 32.5% of the variability in volume growth, while the model that accounted for competition explained 64%. Optimizing the optimal search radius had a greater impact on model performance than optimizing the DBH threshold. This emphasizes the importance of balancing stand density and competition in silvicultural practice.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.