Synergistic engineering of back interface and bulk defects via Mo:Na layer incorporation for efficient directly sputtered Cu(In,Ga)Se2 solar cells

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Zeran Gao, Zihan Guo, Qinxue Pang, Shanshan Tian, Yuchen Xiong, Wanlei Dai, Yali Sun, Chao Gao, Qing Zhou, Ridong Cong, Xinzhan Wang, Wei Yu
{"title":"Synergistic engineering of back interface and bulk defects via Mo:Na layer incorporation for efficient directly sputtered Cu(In,Ga)Se2 solar cells","authors":"Zeran Gao,&nbsp;Zihan Guo,&nbsp;Qinxue Pang,&nbsp;Shanshan Tian,&nbsp;Yuchen Xiong,&nbsp;Wanlei Dai,&nbsp;Yali Sun,&nbsp;Chao Gao,&nbsp;Qing Zhou,&nbsp;Ridong Cong,&nbsp;Xinzhan Wang,&nbsp;Wei Yu","doi":"10.1016/j.solmat.2025.113728","DOIUrl":null,"url":null,"abstract":"<div><div>Cu(In,Ga)Se<sub>2</sub> (CIGS) thin-film solar cells fabricated via direct sputtering of a single quaternary CIGS target face challenges in back-contact engineering, particularly MoSe<sub>2</sub> formation under Se-deficient conditions, which distributes high-density detrimental bulk defects. Herein, interface band alignment and defect control for a high-quality quaternary-sputtered CIGS solar cell is reported by introducing a Mo:Na layer on the back electrode. By depositing a Mo:Na layer prior to Mo sputtering, we achieve controlled Na incorporation, suppressing deep defects while facilitating MoSe<sub>2</sub> crystallization. XPS and UPS analyses reveal that Na-induced surface Cu depletion enhances the preferential (112) oriented grain growth, and the formed MoSe<sub>2</sub> produces a favorable energy band structure at the Mo/CIGS interface. In addition, Na segregation on the absorber surface promotes lateral grain growth, facilitating the growth of the uniform CdS thin films. Combining the results of experiment and SCAPS simulation, the insertion of the Mo:Na layer simultaneously engineers back interface and bulk absorber, the power conversion efficiency of CIGS solar cells increases from 10.17 % to 13.38 %. This work emphasizes the effect of Mo:Na layer in tailoring grain growth, defect level and band arrangement, which paves a convenient and efficient way to realize high performance sputtered solar cells and photovoltaic devices.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113728"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003290","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Cu(In,Ga)Se2 (CIGS) thin-film solar cells fabricated via direct sputtering of a single quaternary CIGS target face challenges in back-contact engineering, particularly MoSe2 formation under Se-deficient conditions, which distributes high-density detrimental bulk defects. Herein, interface band alignment and defect control for a high-quality quaternary-sputtered CIGS solar cell is reported by introducing a Mo:Na layer on the back electrode. By depositing a Mo:Na layer prior to Mo sputtering, we achieve controlled Na incorporation, suppressing deep defects while facilitating MoSe2 crystallization. XPS and UPS analyses reveal that Na-induced surface Cu depletion enhances the preferential (112) oriented grain growth, and the formed MoSe2 produces a favorable energy band structure at the Mo/CIGS interface. In addition, Na segregation on the absorber surface promotes lateral grain growth, facilitating the growth of the uniform CdS thin films. Combining the results of experiment and SCAPS simulation, the insertion of the Mo:Na layer simultaneously engineers back interface and bulk absorber, the power conversion efficiency of CIGS solar cells increases from 10.17 % to 13.38 %. This work emphasizes the effect of Mo:Na layer in tailoring grain growth, defect level and band arrangement, which paves a convenient and efficient way to realize high performance sputtered solar cells and photovoltaic devices.
直接溅射Cu(In,Ga)Se2太阳能电池中Mo:Na层掺入后界面和本体缺陷的协同工程
通过直接溅射制备Cu(In,Ga)Se2 (CIGS)薄膜太阳能电池在背接触工程中面临挑战,特别是在缺硒条件下形成MoSe2,会分布高密度有害的体缺陷。本文报道了通过在背电极上引入Mo:Na层来实现高质量季相溅射CIGS太阳能电池的界面带对准和缺陷控制。通过在Mo溅射之前沉积Mo:Na层,我们实现了可控的Na掺入,抑制了深度缺陷,同时促进了MoSe2的结晶。XPS和UPS分析表明,na诱导的表面Cu耗尽促进了晶粒的优先(112)取向生长,形成的MoSe2在Mo/CIGS界面处产生了有利的能带结构。此外,吸收体表面的Na偏析促进了晶粒的横向生长,有利于均匀cd薄膜的生长。结合实验结果和SCAPS模拟结果,Mo:Na层的插入同时工程了后界面和体吸收体,使CIGS太阳能电池的功率转换效率从10.17%提高到13.38%。本工作强调了Mo:Na层在调整晶粒生长、缺陷水平和能带排列方面的作用,为实现高性能溅射太阳能电池和光伏器件铺平了一条便捷、高效的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信