Optimizing energy yield of monolithic perovskite/silicon tandem solar cells in real-world Conditions: The impact of luminescent coupling

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Khoa Nguyen , Marco Ernst , Abhnil Amtesh Prasad , Thien Truong , Ziv Hameiri , Heping Shen , Klaus Weber , Kylie Catchpole , Daniel Macdonald , Hieu T. Nguyen
{"title":"Optimizing energy yield of monolithic perovskite/silicon tandem solar cells in real-world Conditions: The impact of luminescent coupling","authors":"Khoa Nguyen ,&nbsp;Marco Ernst ,&nbsp;Abhnil Amtesh Prasad ,&nbsp;Thien Truong ,&nbsp;Ziv Hameiri ,&nbsp;Heping Shen ,&nbsp;Klaus Weber ,&nbsp;Kylie Catchpole ,&nbsp;Daniel Macdonald ,&nbsp;Hieu T. Nguyen","doi":"10.1016/j.solmat.2025.113730","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient light management is key to maximizing power conversion efficiency (PCE) in monolithic perovskite/silicon tandem solar cells. Achieving peak efficiency requires closely matched current generation in all junctions, especially in integrated configurations. However, real-world conditions vary significantly due to factors such as sunlight spectrum, diffuse-to-direct sunlight ratio, angular distribution of light, subcell temperature coefficients, and ground reflection. This study introduces a comprehensive optical and device simulation to optimize perovskite/silicon tandem cells, considering experimental luminescent coupling (LC) efficiency and its dependence on working conditions, alongside variations in radiative recombination, effect of temperature on absorptivity spectra, and cloud cover. Our results show potential energy yield improvements of up to 1.4 % with LC, based on current perovskite radiative recombination records, and up to 4 % with direct bandgap materials. Although radiative recombination's dependence on excitation intensity reduces output power and requires thicker absorbers, LC compensates for these losses. LC also lowers the optimized bandgap for the perovskite top cell from 1.72 eV to 1.64–1.68 eV, or even lower in regions with redshifted irradiance. Additionally, optimization revealed that thinner silicon bottom cells require a higher perovskite top cell bandgap, impacting the balance between fabrication cost and cell stability.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113730"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003319","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient light management is key to maximizing power conversion efficiency (PCE) in monolithic perovskite/silicon tandem solar cells. Achieving peak efficiency requires closely matched current generation in all junctions, especially in integrated configurations. However, real-world conditions vary significantly due to factors such as sunlight spectrum, diffuse-to-direct sunlight ratio, angular distribution of light, subcell temperature coefficients, and ground reflection. This study introduces a comprehensive optical and device simulation to optimize perovskite/silicon tandem cells, considering experimental luminescent coupling (LC) efficiency and its dependence on working conditions, alongside variations in radiative recombination, effect of temperature on absorptivity spectra, and cloud cover. Our results show potential energy yield improvements of up to 1.4 % with LC, based on current perovskite radiative recombination records, and up to 4 % with direct bandgap materials. Although radiative recombination's dependence on excitation intensity reduces output power and requires thicker absorbers, LC compensates for these losses. LC also lowers the optimized bandgap for the perovskite top cell from 1.72 eV to 1.64–1.68 eV, or even lower in regions with redshifted irradiance. Additionally, optimization revealed that thinner silicon bottom cells require a higher perovskite top cell bandgap, impacting the balance between fabrication cost and cell stability.
在实际条件下优化单片钙钛矿/硅串联太阳能电池的能量产量:发光耦合的影响
高效的光管理是提高单片钙钛矿/硅串联太阳能电池功率转换效率(PCE)的关键。实现峰值效率需要在所有结中产生紧密匹配的电流,特别是在集成配置中。然而,由于阳光光谱、漫射阳光与直射阳光的比例、光的角分布、亚单元温度系数和地面反射等因素,现实世界的条件变化很大。本研究引入了一种全面的光学和器件模拟来优化钙钛矿/硅串联电池,考虑了实验发光耦合(LC)效率及其对工作条件的依赖,以及辐射复合的变化、温度对吸收光谱的影响和云层覆盖。我们的研究结果表明,基于当前钙钛矿辐射复合记录,LC的势能产率提高了1.4%,而直接带隙材料的势能产率提高了4%。虽然辐射复合对激发强度的依赖降低了输出功率,需要更厚的吸收器,但LC补偿了这些损失。LC还将钙钛矿顶部电池的优化带隙从1.72 eV降低到1.64-1.68 eV,在红移辐照度区域甚至更低。此外,优化表明,更薄的硅底部电池需要更高的钙钛矿顶部电池带隙,这影响了制造成本和电池稳定性之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信