Drag coefficient prediction model for simulating breaking waves propagating on partly submerged vegetated sloping beaches using a RANS model

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Yanxu Wang , Quanlin Qiu , Zegao Yin , Xiutao Jiang , Xuan Zhang
{"title":"Drag coefficient prediction model for simulating breaking waves propagating on partly submerged vegetated sloping beaches using a RANS model","authors":"Yanxu Wang ,&nbsp;Quanlin Qiu ,&nbsp;Zegao Yin ,&nbsp;Xiutao Jiang ,&nbsp;Xuan Zhang","doi":"10.1016/j.coastaleng.2025.104788","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of vegetation drag coefficients (<em>C</em><sub>D</sub>) is crucial for simulating breaking wave propagation on partly submerged vegetated sloping beaches. This study conducted a comprehensive investigation involving physical experiments and numerical modeling to address the limitations of existing empirical formulas for <em>C</em><sub>D</sub>. The experiments varied incident wave heights (<em>H</em><sub>i</sub> = 0.02–0.10 m), wave periods (<em>T</em> = 1.0–1.8 s), vegetation densities (<em>N</em><sub>v</sub> = 41–590 units/m<sup>2</sup>), vegetation zone lengths (<em>L</em><sub>v</sub> = 0.8–1.6 m), and beach slope gradients (<em>m</em> = 1/10–1/30), generating a database of 750 calibrated <em>C</em><sub>D</sub> values. Numerical simulations using a Reynolds-Averaged Navier-Stokes (RANS) model coupled with the stabilized <em>k−ω</em> SST turbulence model and the volume-of-fluid (VOF) method revealed that <em>C</em><sub>D</sub> correlates strongly with the Iribarren number (<em>ξ</em><sub>0</sub>), while being highly sensitive to vegetation density and zone length. Two prediction models were developed: a multivariate nonlinear regression (MNLR) model and an M5P-tree machine learning model. Both models utilized <em>ξ</em><sub>0</sub>, vegetation volume fraction (<em>φ</em>), and relative vegetation zone length (<em>λ</em><sub><em>L</em></sub>) as input parameters. The MNLR model provided a compact formula with moderate accuracy (<em>R</em> = 0.87, <em>RMSE</em> = 0.77), while the M5P-tree model partitioned the parameter space using <em>φ</em> and <em>ξ</em><sub>0</sub>, generating three tailored sub-models with superior performance (<em>R</em> = 0.91, <em>RMSE</em> = 0.64). Further validation with independent datasets confirmed that the M5P-tree model outperformed the MNLR model in simulating wave height evolution over vegetated sloping beaches. These findings demonstrate the potential of the M5P-tree model as a robust tool for enhancing simulations of breaking wave propagation on vegetated sloping beaches and optimizing vegetated coastal defenses.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"201 ","pages":"Article 104788"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925000936","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of vegetation drag coefficients (CD) is crucial for simulating breaking wave propagation on partly submerged vegetated sloping beaches. This study conducted a comprehensive investigation involving physical experiments and numerical modeling to address the limitations of existing empirical formulas for CD. The experiments varied incident wave heights (Hi = 0.02–0.10 m), wave periods (T = 1.0–1.8 s), vegetation densities (Nv = 41–590 units/m2), vegetation zone lengths (Lv = 0.8–1.6 m), and beach slope gradients (m = 1/10–1/30), generating a database of 750 calibrated CD values. Numerical simulations using a Reynolds-Averaged Navier-Stokes (RANS) model coupled with the stabilized k−ω SST turbulence model and the volume-of-fluid (VOF) method revealed that CD correlates strongly with the Iribarren number (ξ0), while being highly sensitive to vegetation density and zone length. Two prediction models were developed: a multivariate nonlinear regression (MNLR) model and an M5P-tree machine learning model. Both models utilized ξ0, vegetation volume fraction (φ), and relative vegetation zone length (λL) as input parameters. The MNLR model provided a compact formula with moderate accuracy (R = 0.87, RMSE = 0.77), while the M5P-tree model partitioned the parameter space using φ and ξ0, generating three tailored sub-models with superior performance (R = 0.91, RMSE = 0.64). Further validation with independent datasets confirmed that the M5P-tree model outperformed the MNLR model in simulating wave height evolution over vegetated sloping beaches. These findings demonstrate the potential of the M5P-tree model as a robust tool for enhancing simulations of breaking wave propagation on vegetated sloping beaches and optimizing vegetated coastal defenses.
用RANS模型模拟破碎波在部分淹没植被斜坡滩上传播的阻力系数预测模型
植被阻力系数的准确预测是模拟部分淹没植被坡滩破碎波传播的关键。为了解决现有CD经验公式的局限性,本研究通过物理实验和数值模拟进行了全面调查。实验改变了入射波高(Hi = 0.02-0.10 m)、波周期(T = 1.0-1.8 s)、植被密度(Nv = 41-590单位/m2)、植被带长度(Lv = 0.8-1.6 m)和海滩坡度(m = 1/10-1/30),生成了750个校准CD值的数据库。利用reynolds - average Navier-Stokes (RANS)模型、稳定k−ω海温湍流模型和流体体积(VOF)方法进行的数值模拟表明,CD与Iribarren number (ξ0)密切相关,而对植被密度和带长高度敏感。开发了两种预测模型:多元非线性回归(MNLR)模型和m5p树机器学习模型。两种模型均以植被体积分数(φ)、植被带相对长度(λL)为输入参数。MNLR模型提供了一个紧凑的公式,精度适中(R = 0.87, RMSE = 0.77),而M5P-tree模型使用φ和ξ0对参数空间进行划分,生成了三个定制的子模型,性能优越(R = 0.91, RMSE = 0.64)。独立数据集的进一步验证证实,M5P-tree模型在模拟植被覆盖的斜坡海滩上的波高演变方面优于MNLR模型。这些发现证明了M5P-tree模型作为一种强大工具的潜力,可以增强对植被覆盖的斜坡海滩上破碎波传播的模拟,并优化植被覆盖的海岸防御。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信