Boosting Energy Deprivation via Synchronous Interventions of Oxidative Phosphorylation and Glycolysis for Cancer Therapy with 1,8-Naphthyridine-Piperazine-Dithiocarbamate Ruthenium(II) Polypyridyl Complexes
Huiling Wang, Lei Chen, Zhichen Mao, Shuangqiang Liu, Rizhen Huang, Ruijie He, Ye Zhang* and Jianhua Wei*,
{"title":"Boosting Energy Deprivation via Synchronous Interventions of Oxidative Phosphorylation and Glycolysis for Cancer Therapy with 1,8-Naphthyridine-Piperazine-Dithiocarbamate Ruthenium(II) Polypyridyl Complexes","authors":"Huiling Wang, Lei Chen, Zhichen Mao, Shuangqiang Liu, Rizhen Huang, Ruijie He, Ye Zhang* and Jianhua Wei*, ","doi":"10.1021/acs.jmedchem.5c0038410.1021/acs.jmedchem.5c00384","DOIUrl":null,"url":null,"abstract":"<p >Bioenergetic therapy targeting mitochondrial bioenergy is a promising therapeutic strategy for cancer. However, its clinical efficacy is limited by the metabolic adaptability of tumor cells, as they can switch between glycolytic and oxidative phosphorylation metabolic phenotypes to maintain energy homeostasis. In this study, we discovered 1,8-naphthyridine-piperazine-dithiocarbamate ruthenium(II) polypyridyl complexes (<b>RuL1</b>) that enhanced energy deprivation by inhibiting the activity of mitochondrial complex I and III, thereby disrupting oxidative phosphorylation. Simultaneously, <b>RuL1</b> inhibits glycolysis while unexpectedly activating antitumor immunity. This dual metabolic–immunological targeting resulted in enhanced anticancer activity against MGC-803 cells. To the best of our knowledge, <b>RuL1</b> is the first ruthenium polypyridyl complex reported to achieve high anticancer activity through dual metabolic inhibition.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"68 10","pages":"10203–10215 10203–10215"},"PeriodicalIF":6.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c00384","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bioenergetic therapy targeting mitochondrial bioenergy is a promising therapeutic strategy for cancer. However, its clinical efficacy is limited by the metabolic adaptability of tumor cells, as they can switch between glycolytic and oxidative phosphorylation metabolic phenotypes to maintain energy homeostasis. In this study, we discovered 1,8-naphthyridine-piperazine-dithiocarbamate ruthenium(II) polypyridyl complexes (RuL1) that enhanced energy deprivation by inhibiting the activity of mitochondrial complex I and III, thereby disrupting oxidative phosphorylation. Simultaneously, RuL1 inhibits glycolysis while unexpectedly activating antitumor immunity. This dual metabolic–immunological targeting resulted in enhanced anticancer activity against MGC-803 cells. To the best of our knowledge, RuL1 is the first ruthenium polypyridyl complex reported to achieve high anticancer activity through dual metabolic inhibition.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.