Hydrogen Storage Properties of the Ti18V24Nb23Cr33Al2 Multicomponent Alloy Using Ti6V4Al Alloy Scraps as Feedstock Material

Mariana de Brito Ferraz, Claudia Zlotea, Walter José Botta and Guilherme Zepon*, 
{"title":"Hydrogen Storage Properties of the Ti18V24Nb23Cr33Al2 Multicomponent Alloy Using Ti6V4Al Alloy Scraps as Feedstock Material","authors":"Mariana de Brito Ferraz,&nbsp;Claudia Zlotea,&nbsp;Walter José Botta and Guilherme Zepon*,&nbsp;","doi":"10.1021/acssusresmgt.5c0005410.1021/acssusresmgt.5c00054","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen storage in metal hydrides has been extensively studied due to their capacity to reversibly absorb hydrogen under relatively low pressures. Multicomponent alloys, especially those of the Ti-V-Nb-Cr system, have garnered significant attention because of the possibility of fine-tuning the hydrogen storage properties by compositional control. However, most of the investigations on multicomponent alloys rely on high-purity elements as feedstock materials, which can have a substantial environmental impact due to the energy-intensive processes required to achieve such purity levels. In this work, we propose an alternative approach by utilizing Ti6Al4V alloy (ASTM F136) scraps from the biomedical industry as feedstock material to produce Ti<sub>18</sub>Nb<sub>23</sub>V<sub>24</sub>Cr<sub>33</sub>Al<sub>2</sub>. The alloy was synthesized by using an arc-melting process, combining Ti6Al4V scraps with other pure elements. Structural analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the formation of a microstructure composed predominantly by a body-centered cubic (BCC) solid solution with a small micro segregation providing additional microstructural insights. The Ti<sub>18</sub>Nb<sub>23</sub>V<sub>24</sub>Cr<sub>33</sub>Al<sub>2</sub> alloy exhibited a hydrogen storage capacity of 2.75 wt % H<sub>2</sub> with room temperature reversibility, presenting hydrogen storage properties comparable to those of a (TiVNb)<sub>65</sub>Cr<sub>35</sub> alloy produced only from high-purity elements.</p><p >This study presents a sustainable approach to producing Ti<sub>18</sub>Nb<sub>23</sub>V<sub>24</sub>Cr<sub>33</sub>Al<sub>2</sub> alloy from Ti6Al4V machine chips, achieving efficient hydrogen storage with reduced environmental impact.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"2 5","pages":"807–814 807–814"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssusresmgt.5c00054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.5c00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen storage in metal hydrides has been extensively studied due to their capacity to reversibly absorb hydrogen under relatively low pressures. Multicomponent alloys, especially those of the Ti-V-Nb-Cr system, have garnered significant attention because of the possibility of fine-tuning the hydrogen storage properties by compositional control. However, most of the investigations on multicomponent alloys rely on high-purity elements as feedstock materials, which can have a substantial environmental impact due to the energy-intensive processes required to achieve such purity levels. In this work, we propose an alternative approach by utilizing Ti6Al4V alloy (ASTM F136) scraps from the biomedical industry as feedstock material to produce Ti18Nb23V24Cr33Al2. The alloy was synthesized by using an arc-melting process, combining Ti6Al4V scraps with other pure elements. Structural analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the formation of a microstructure composed predominantly by a body-centered cubic (BCC) solid solution with a small micro segregation providing additional microstructural insights. The Ti18Nb23V24Cr33Al2 alloy exhibited a hydrogen storage capacity of 2.75 wt % H2 with room temperature reversibility, presenting hydrogen storage properties comparable to those of a (TiVNb)65Cr35 alloy produced only from high-purity elements.

This study presents a sustainable approach to producing Ti18Nb23V24Cr33Al2 alloy from Ti6Al4V machine chips, achieving efficient hydrogen storage with reduced environmental impact.

以Ti6V4Al合金废料为原料制备Ti18V24Nb23Cr33Al2多组分合金的储氢性能
由于金属氢化物能够在相对较低的压力下可逆地吸收氢,因此其储氢性能得到了广泛的研究。多组分合金,特别是Ti-V-Nb-Cr系合金,由于可以通过成分控制来微调储氢性能而引起了人们的广泛关注。然而,大多数对多组分合金的研究都依赖于高纯度元素作为原料,由于达到这种纯度水平所需的能源密集型工艺,这可能对环境产生重大影响。在这项工作中,我们提出了一种替代方法,即利用生物医学工业的Ti6Al4V合金(ASTM F136)废料作为原料生产Ti18Nb23V24Cr33Al2。采用电弧熔炼法,将Ti6Al4V废渣与其他纯元素相结合,合成了该合金。利用x射线衍射(XRD)和扫描电子显微镜(SEM)进行结构分析,发现形成了一个主要由体心立方(BCC)固溶体组成的微观结构,具有微小的微偏析,为进一步了解微观结构提供了新的思路。Ti18Nb23V24Cr33Al2合金的储氢容量为2.75 wt % H2,具有室温可逆性,其储氢性能可与仅由高纯度元素制备的(TiVNb)65Cr35合金相比较。本研究提出了一种用Ti6Al4V机器芯片生产Ti18Nb23V24Cr33Al2合金的可持续方法,在减少环境影响的同时实现高效储氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信