Promoting Mn3+ Spin-State Transitions from t2g to eg through Ni Doping in Antiperovskite CuNMn3 for Highly Efficient Ammonia Synthesis

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yuxiang Yan, Jinyu Zhou, Hengdong Ren, Linze Li, Ka Wang, Lei Feng, Siying Ma, Qifan Wu, Di Wang, Yurong Yang, Chunlan Ma*, Xiaobing Xu* and Xinglong Wu*, 
{"title":"Promoting Mn3+ Spin-State Transitions from t2g to eg through Ni Doping in Antiperovskite CuNMn3 for Highly Efficient Ammonia Synthesis","authors":"Yuxiang Yan,&nbsp;Jinyu Zhou,&nbsp;Hengdong Ren,&nbsp;Linze Li,&nbsp;Ka Wang,&nbsp;Lei Feng,&nbsp;Siying Ma,&nbsp;Qifan Wu,&nbsp;Di Wang,&nbsp;Yurong Yang,&nbsp;Chunlan Ma*,&nbsp;Xiaobing Xu* and Xinglong Wu*,&nbsp;","doi":"10.1021/acs.jpclett.5c0056310.1021/acs.jpclett.5c00563","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical nitrogen reduction reaction (e-NRR) offers a sustainable approach to ammonia synthesis under ambient conditions, with the potential to replace the energy-intensive Haber–Bosch process. Despite significant progress in this promising field, the low NH<sub>3</sub> yield rate and limited Faradaic efficiency (FE) remain formidable challenges. Here, we introduce antiperovskite Cu<sub>1–<i>x</i></sub>Ni<sub><i>x</i></sub>NMn<sub>3</sub>, where partial substitution of Cu by Ni in CuNMn<sub>3</sub> is developed as an effective and robust e-NRR electrocatalyst. Notably, Cu<sub>0.7</sub>Ni<sub>0.3</sub>NMn<sub>3</sub> demonstrates outstanding e-NRR performance, achieving an NH<sub>3</sub> yield rate of 33.9 ± 1.1 μg h<sup>–1</sup> mg<sup>–1</sup>, an FE of 19.2 ± 0.62% at −0.4 V versus RHE, and excellent long-term stability over 50 h of electrolysis. In-depth mechanistic studies reveal that the Ni/Cu exchange process in Cu<sub>1–<i>x</i></sub>Ni<sub><i>x</i></sub>NMn<sub>3</sub> maintains structural integrity and stabilizes the valence states. Ni atoms at the corner sites interact with adjacent Mn atoms at the face centers via antiferromagnetic interactions, altering the original magnetic exchange interactions. This modification triggers a spin-state transition of some Mn<sup>3+</sup> ions from a low-spin (t<sub>2g</sub><sup>4</sup>e<sub>g</sub><sup>0</sup>) to a high-spin (t<sub>2g</sub><sup>3</sup>e<sub>g</sub><sup>1</sup>) configuration. Density functional theory (DFT) calculations confirm that the improved e<sub>g</sub> orbital electronic configuration enhances N<sub>2</sub> adsorption energy at Mn catalytic sites and promotes the hydrogenation of N<sub>2</sub> to form *NNH intermediates, thereby accounting for the high activity of Cu<sub>0.3</sub>Ni<sub>0.7</sub>NMn<sub>3</sub> in the e-NRR.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 20","pages":"5025–5033 5025–5033"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00563","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical nitrogen reduction reaction (e-NRR) offers a sustainable approach to ammonia synthesis under ambient conditions, with the potential to replace the energy-intensive Haber–Bosch process. Despite significant progress in this promising field, the low NH3 yield rate and limited Faradaic efficiency (FE) remain formidable challenges. Here, we introduce antiperovskite Cu1–xNixNMn3, where partial substitution of Cu by Ni in CuNMn3 is developed as an effective and robust e-NRR electrocatalyst. Notably, Cu0.7Ni0.3NMn3 demonstrates outstanding e-NRR performance, achieving an NH3 yield rate of 33.9 ± 1.1 μg h–1 mg–1, an FE of 19.2 ± 0.62% at −0.4 V versus RHE, and excellent long-term stability over 50 h of electrolysis. In-depth mechanistic studies reveal that the Ni/Cu exchange process in Cu1–xNixNMn3 maintains structural integrity and stabilizes the valence states. Ni atoms at the corner sites interact with adjacent Mn atoms at the face centers via antiferromagnetic interactions, altering the original magnetic exchange interactions. This modification triggers a spin-state transition of some Mn3+ ions from a low-spin (t2g4eg0) to a high-spin (t2g3eg1) configuration. Density functional theory (DFT) calculations confirm that the improved eg orbital electronic configuration enhances N2 adsorption energy at Mn catalytic sites and promotes the hydrogenation of N2 to form *NNH intermediates, thereby accounting for the high activity of Cu0.3Ni0.7NMn3 in the e-NRR.

Abstract Image

在反钙钛矿CuNMn3中掺杂Ni促进Mn3+自旋态从t2g向eg转变,用于高效氨合成
电化学氮还原反应(e-NRR)为环境条件下的氨合成提供了一种可持续的方法,有可能取代高能耗的Haber-Bosch工艺。尽管在这一有前途的领域取得了重大进展,但低NH3产率和有限的法拉第效率(FE)仍然是巨大的挑战。在这里,我们引入了反钙钛矿Cu1-xNixNMn3,其中CuNMn3中的Ni部分取代Cu是一种有效且稳健的e-NRR电催化剂。值得注意的是,Cu0.7Ni0.3NMn3具有出色的e-NRR性能,在−0.4 V条件下,NH3的产率为33.9±1.1 μg - 1 mg-1, FE为19.2±0.62%,且在50 h以上的长期稳定性良好。深入的机理研究表明,Cu1-xNixNMn3中的Ni/Cu交换过程保持了结构的完整性并稳定了价态。角点的Ni原子通过反铁磁相互作用与面中心相邻的Mn原子相互作用,改变了原有的磁交换相互作用。这种修饰触发了一些Mn3+离子从低自旋(t2g4eg0)到高自旋(t2g3eg1)的自旋态转变。密度泛函理论(DFT)计算证实,改进的eg轨道电子构型提高了Mn催化位点的N2吸附能,促进N2加氢生成*NNH中间体,从而解释了e-NRR中Cu0.3Ni0.7NMn3的高活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信