Control of ultrafast hot electron dynamics in epsilon-near-zero conductive oxide thin films

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sudip Gurung, Subhajit Bej, Quynh Dang, Ambaresh Sahoo, Aleksei Anopchenko, Zhenhuan Yi, Alexei V. Sokolov, Andrea Marini, Ho Wai Howard Lee
{"title":"Control of ultrafast hot electron dynamics in epsilon-near-zero conductive oxide thin films","authors":"Sudip Gurung,&nbsp;Subhajit Bej,&nbsp;Quynh Dang,&nbsp;Ambaresh Sahoo,&nbsp;Aleksei Anopchenko,&nbsp;Zhenhuan Yi,&nbsp;Alexei V. Sokolov,&nbsp;Andrea Marini,&nbsp;Ho Wai Howard Lee","doi":"10.1126/sciadv.adu8850","DOIUrl":null,"url":null,"abstract":"<div >The dynamics of nonlinear optical processes in epsilon-near-zero (ENZ) transparent conductive oxides (TCOs) are primarily governed by hot electron relaxation with a sub-picosecond response. However, there is currently a lack of comprehensive understanding of the ultrafast electron dynamics in nonlinear TCO ENZ materials. This study investigates the effects of laser peak power and ENZ mode excitation on hot electron relaxation in TCOs. Our experimental analysis theoretically supported by a hydrodynamic model reveals that increasing laser pulse intensity extends hot electron relaxation time by more than 200%, while ENZ mode excitation increases it by more than 40% in representative TCO ENZ materials. This research demonstrates the controllable modulation of ultrafast ENZ nonlinearity via pulse peak power and ENZ mode field enhancement. These findings provide substantial insights into the potential utilization of ENZ nonlinearity for the development of optical and quantum computing components, including ultrafast optical switches, dynamic pulse shapers, and modulators.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 21","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu8850","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu8850","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of nonlinear optical processes in epsilon-near-zero (ENZ) transparent conductive oxides (TCOs) are primarily governed by hot electron relaxation with a sub-picosecond response. However, there is currently a lack of comprehensive understanding of the ultrafast electron dynamics in nonlinear TCO ENZ materials. This study investigates the effects of laser peak power and ENZ mode excitation on hot electron relaxation in TCOs. Our experimental analysis theoretically supported by a hydrodynamic model reveals that increasing laser pulse intensity extends hot electron relaxation time by more than 200%, while ENZ mode excitation increases it by more than 40% in representative TCO ENZ materials. This research demonstrates the controllable modulation of ultrafast ENZ nonlinearity via pulse peak power and ENZ mode field enhancement. These findings provide substantial insights into the potential utilization of ENZ nonlinearity for the development of optical and quantum computing components, including ultrafast optical switches, dynamic pulse shapers, and modulators.
近零导电氧化薄膜中超快热电子动力学的控制
近零(ENZ)透明导电氧化物(TCOs)中非线性光学过程的动力学主要由具有亚皮秒响应的热电子弛豫控制。然而,目前对非线性TCO ENZ材料的超快电子动力学缺乏全面的认识。本文研究了激光峰值功率和ENZ模式激发对tco中热电子弛豫的影响。我们的实验分析得到了流体动力学模型的理论支持,结果表明,在典型的TCO ENZ材料中,增加激光脉冲强度可使热电子弛豫时间延长200%以上,而ENZ模式激发可使热电子弛豫时间延长40%以上。本文研究了通过脉冲峰值功率和ENZ模场增强对超快ENZ非线性的可控调制。这些发现为ENZ非线性在光学和量子计算组件(包括超快光开关、动态脉冲整形器和调制器)开发中的潜在应用提供了实质性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信