{"title":"Hospital plastic waste valorization through microwave-assisted Pyrolysis: Experimental and modeling studies via machine learning","authors":"Ramesh Potnuri , Chinta Sankar Rao , Dadi Venkata Surya , Abhishankar Kumar","doi":"10.1016/j.jclepro.2025.145772","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic generated a global upsurge in hospital plastic waste (HPW) as a consequence of the widespread utilization of personal protective equipment (PPE) composed of diverse polymer materials. The constant demand for PPE worldwide led to the accumulation of substantial volumes of high-polymer-based plastic waste. To tackle this challenge, researchers delved into the conversion of HPW into valuable chemicals through a process known as microwave-assisted pyrolysis (MAP). This method entails the transformation of HPW into high-quality char and liquid oil, which can serve as a source of fuel. In this study, our primary focus was to understand how the ratio of HPW (hospital plastic waste) to susceptor weight influenced the yields and characteristics of the resulting products in the context of the MAP process. To facilitate the experimental setup, a Central Composite Design (CCD) was employed. The impact of varying HPW weights and susceptor quantities on the production of value-added products was investigated. The analysis of condensed organic vapor decomposition revealed an increase in liquid yields (73.6 wt %, 76.6 wt %, 80.7 wt %) as the graphite content increased at a constant 30 g HPW. Conversely, gas yield decreased with higher susceptor and HPW quantity. Keeping the graphite constant at 4g, the gas yield declined (32.5 wt %, 30.7 wt %, and 24.7 wt %) as HPW increased. Additionally, gas yield exhibited a drop (32.5 wt % to 18.1 wt %) with an increase in both graphite and HPW. Furthermore, the residual yield decreased (from 1.7 wt % to 1.2 wt %) with a 30 g increase in HPW. In-depth analysis incorporated machine learning techniques to understand the behavior of response variables about susceptor and HPW quantities. The optimization of the MAP process for HPW encompassed various supplementary operational parameters, including susceptor thermal energy, average heating rate, microwave energy, specific microwave power, and product yields. Moreover, the residue generated from the MAP of HPW underwent characterization through X-ray diffraction (XRD), FTIR, and BET analysis.</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"514 ","pages":"Article 145772"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652625011229","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic generated a global upsurge in hospital plastic waste (HPW) as a consequence of the widespread utilization of personal protective equipment (PPE) composed of diverse polymer materials. The constant demand for PPE worldwide led to the accumulation of substantial volumes of high-polymer-based plastic waste. To tackle this challenge, researchers delved into the conversion of HPW into valuable chemicals through a process known as microwave-assisted pyrolysis (MAP). This method entails the transformation of HPW into high-quality char and liquid oil, which can serve as a source of fuel. In this study, our primary focus was to understand how the ratio of HPW (hospital plastic waste) to susceptor weight influenced the yields and characteristics of the resulting products in the context of the MAP process. To facilitate the experimental setup, a Central Composite Design (CCD) was employed. The impact of varying HPW weights and susceptor quantities on the production of value-added products was investigated. The analysis of condensed organic vapor decomposition revealed an increase in liquid yields (73.6 wt %, 76.6 wt %, 80.7 wt %) as the graphite content increased at a constant 30 g HPW. Conversely, gas yield decreased with higher susceptor and HPW quantity. Keeping the graphite constant at 4g, the gas yield declined (32.5 wt %, 30.7 wt %, and 24.7 wt %) as HPW increased. Additionally, gas yield exhibited a drop (32.5 wt % to 18.1 wt %) with an increase in both graphite and HPW. Furthermore, the residual yield decreased (from 1.7 wt % to 1.2 wt %) with a 30 g increase in HPW. In-depth analysis incorporated machine learning techniques to understand the behavior of response variables about susceptor and HPW quantities. The optimization of the MAP process for HPW encompassed various supplementary operational parameters, including susceptor thermal energy, average heating rate, microwave energy, specific microwave power, and product yields. Moreover, the residue generated from the MAP of HPW underwent characterization through X-ray diffraction (XRD), FTIR, and BET analysis.
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.