Micol Introna , Ana Teresa Juárez-Facio , Naga Veera Srikanth Vallabani , Ming Hui Tu , Paavo Heikkilä , Andrea Colombo , Valentina Liboni , Bozhena Tsyupa , Alessandro Mancini , Jorma Keskinen , Ulf Olofsson , Sarah Sulamith Steimer , Hanna Lovisa Karlsson , Karine Elihn
{"title":"Toxicity of real-world PM2.5 road tunnel emissions using a mobile air-liquid interface system and submerged exposure","authors":"Micol Introna , Ana Teresa Juárez-Facio , Naga Veera Srikanth Vallabani , Ming Hui Tu , Paavo Heikkilä , Andrea Colombo , Valentina Liboni , Bozhena Tsyupa , Alessandro Mancini , Jorma Keskinen , Ulf Olofsson , Sarah Sulamith Steimer , Hanna Lovisa Karlsson , Karine Elihn","doi":"10.1016/j.envpol.2025.126486","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic-related air pollution is a major public health concern, contributing to respiratory and cardiovascular diseases worldwide. The aim of this study was to investigate the feasibility of using a mobile Air-Liquid Interface (ALI) system to assess the cytotoxicity and inflammatory potential of freshly generated PM<sub>2.5</sub> (particle matter with aerodynamic diameter <2.5 μm) in a road tunnel in Stockholm. We hypothesized that cellular effects would be detectable at lower doses compared to submerged exposures. The mean particle dose in ALI was 1.4 ± 0.8 μg/cm<sup>2</sup>, whereas a wide range of doses was used for submerged exposures. ALI and submerged results showed that PM<sub>2.5</sub> from the road tunnel did not affect the viability of A549 cells, whereas a significant and dose-dependent decrease in viability of dTHP-1 (in submerged exposure) was observed. Furthermore, in A549 in ALI a slight increase in inflammatory response (IL-8, IL-6, and IL-1β) was observed. In submerged exposure, the inflammatory response was clearer, particularly in the dTHP-1 cells. In conclusion, this study presents the first successfully conducted <em>in situ</em> ALI exposure in a road tunnel. The results demonstrate that dTHP-1 cells exhibit clear cytotoxic and inflammatory responses, while A549 show only weak effects. These findings suggest that co-cultures of A549 and dTHP-1 may be valuable in future ALI studies.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"379 ","pages":"Article 126486"},"PeriodicalIF":7.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125008590","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic-related air pollution is a major public health concern, contributing to respiratory and cardiovascular diseases worldwide. The aim of this study was to investigate the feasibility of using a mobile Air-Liquid Interface (ALI) system to assess the cytotoxicity and inflammatory potential of freshly generated PM2.5 (particle matter with aerodynamic diameter <2.5 μm) in a road tunnel in Stockholm. We hypothesized that cellular effects would be detectable at lower doses compared to submerged exposures. The mean particle dose in ALI was 1.4 ± 0.8 μg/cm2, whereas a wide range of doses was used for submerged exposures. ALI and submerged results showed that PM2.5 from the road tunnel did not affect the viability of A549 cells, whereas a significant and dose-dependent decrease in viability of dTHP-1 (in submerged exposure) was observed. Furthermore, in A549 in ALI a slight increase in inflammatory response (IL-8, IL-6, and IL-1β) was observed. In submerged exposure, the inflammatory response was clearer, particularly in the dTHP-1 cells. In conclusion, this study presents the first successfully conducted in situ ALI exposure in a road tunnel. The results demonstrate that dTHP-1 cells exhibit clear cytotoxic and inflammatory responses, while A549 show only weak effects. These findings suggest that co-cultures of A549 and dTHP-1 may be valuable in future ALI studies.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.