Alanah Grant-St James , Aude-Claire Lee , Alex J. Lee , Julien Wist , Ferdous Sohel , Kok Wai Wong , Bu B. Yeap , Ruey Leng Loo , Amanda Henry , Daniella Susic , Emad El-Omar , Jeremy K. Nicholson , Elaine Holmes , Luke Whiley , Nicola Gray
{"title":"Analytical quality control in targeted lipidomics: Evaluating the performance of commercial plasma as a surrogate for pooled study samples","authors":"Alanah Grant-St James , Aude-Claire Lee , Alex J. Lee , Julien Wist , Ferdous Sohel , Kok Wai Wong , Bu B. Yeap , Ruey Leng Loo , Amanda Henry , Daniella Susic , Emad El-Omar , Jeremy K. Nicholson , Elaine Holmes , Luke Whiley , Nicola Gray","doi":"10.1016/j.aca.2025.344225","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Pooled quality control (PQC) samples are the gold standard for data quality monitoring in metabolic phenotyping studies. Typically composed of equal parts from all study samples, PQCs can be challenging to generate in large cohorts or when sample volumes are low. As an alternative, externally sourced matrix-matched surrogate QCs (sQC) have been proposed. This study evaluates the performance of sQCs against PQCs for assessing analytical variation, data pre-processing, and downstream data analysis in a targeted lipidomics workflow.</div></div><div><h3>Results</h3><div>Plasma samples (n = 701) from the Microbiome Understanding in Maternity Study, along with PQC (n = 80) and sQC (n = 80) samples, were analyzed using a lipidomics assay targeting 1162 lipids. QC samples were injected throughout acquisition, and data pre-processing was performed using each strategy. For simplicity, a subset (n = 381) of the study samples was used to assess differences in downstream statistical analyses.</div><div>Both QC approaches demonstrated high analytical repeatability. While PQC and sQC compositions differed, use of PQCs retained less than 4 % more lipid species during pre-processing. Univariate analysis identified more statistically significant lipids with PQC-based pre-processing, but multivariate model performance was similar between datasets.</div></div><div><h3>Significance</h3><div>This study provides a comprehensive comparison of QC strategies and emphasizes the importance of careful QC workflow selection. While PQCs offer advantages, sQCs serve as a suitable alternative for quality assessment and pre-processing. Their commercial availability also supports use as intra- and inter-laboratory long-term references, aiding data harmonization across studies and laboratories.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1365 ","pages":"Article 344225"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267025006191","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Pooled quality control (PQC) samples are the gold standard for data quality monitoring in metabolic phenotyping studies. Typically composed of equal parts from all study samples, PQCs can be challenging to generate in large cohorts or when sample volumes are low. As an alternative, externally sourced matrix-matched surrogate QCs (sQC) have been proposed. This study evaluates the performance of sQCs against PQCs for assessing analytical variation, data pre-processing, and downstream data analysis in a targeted lipidomics workflow.
Results
Plasma samples (n = 701) from the Microbiome Understanding in Maternity Study, along with PQC (n = 80) and sQC (n = 80) samples, were analyzed using a lipidomics assay targeting 1162 lipids. QC samples were injected throughout acquisition, and data pre-processing was performed using each strategy. For simplicity, a subset (n = 381) of the study samples was used to assess differences in downstream statistical analyses.
Both QC approaches demonstrated high analytical repeatability. While PQC and sQC compositions differed, use of PQCs retained less than 4 % more lipid species during pre-processing. Univariate analysis identified more statistically significant lipids with PQC-based pre-processing, but multivariate model performance was similar between datasets.
Significance
This study provides a comprehensive comparison of QC strategies and emphasizes the importance of careful QC workflow selection. While PQCs offer advantages, sQCs serve as a suitable alternative for quality assessment and pre-processing. Their commercial availability also supports use as intra- and inter-laboratory long-term references, aiding data harmonization across studies and laboratories.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.