{"title":"BPS spectra of complex knots","authors":"Vivek Kumar Singh, Nafaa Chbili","doi":"10.1103/physrevd.111.106011","DOIUrl":null,"url":null,"abstract":"Marino’s Conjecture remains underexplored within the framework of S</a:mi>O</a:mi>(</a:mo>N</a:mi>)</a:mo></a:math> string dualities. In this article, we investigated the reformulated invariants of one-parameter families of knots <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mrow><e:mo stretchy=\"false\">[</e:mo><e:mi mathvariant=\"script\">K</e:mi><e:mo stretchy=\"false\">]</e:mo></e:mrow><e:mi>p</e:mi></e:msub></e:math> derived from tangle surgery on Manolescu’s quasialternating knot diagrams [C. Manolescu, ]. Within topological string dualities, we have verified Marino’s integrality conjecture for these families of knots up to the Young diagram representation <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mi mathvariant=\"bold\">R</j:mi></j:math>, with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mo stretchy=\"false\">|</m:mo><m:mi mathvariant=\"bold\">R</m:mi><m:mo stretchy=\"false\">|</m:mo></m:mrow><m:mo>≤</m:mo><m:mn>2</m:mn></m:math>. Furthermore, through our analysis, we have conjectured a closed structure for the extremal refined Bogomol’nyi–Prasad–Sommerfeld (BPS) integers for the torus knots <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:msub><r:mrow><r:mo stretchy=\"false\">[</r:mo><r:msub><r:mn mathvariant=\"bold\">3</r:mn><r:mn mathvariant=\"bold\">1</r:mn></r:msub><r:mo stretchy=\"false\">]</r:mo></r:mrow><r:mrow><r:mn>2</r:mn><r:mi>p</r:mi><r:mo>+</r:mo><r:mn>1</r:mn></r:mrow></r:msub></r:math> and <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:msub><x:mrow><x:mo stretchy=\"false\">[</x:mo><x:msub><x:mn mathvariant=\"bold\">8</x:mn><x:mn mathvariant=\"bold\">20</x:mn></x:msub><x:mo stretchy=\"false\">]</x:mo></x:mrow><x:mrow><x:mn>2</x:mn><x:mi>p</x:mi><x:mo>+</x:mo><x:mn>1</x:mn></x:mrow></x:msub></x:math>, <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:mi>p</db:mi><db:mo>∈</db:mo><db:msub><db:mi mathvariant=\"double-struck\">Z</db:mi><db:mrow><db:mo>≥</db:mo><db:mn>0</db:mn></db:mrow></db:msub></db:math>. As the parameter <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>p</gb:mi></gb:math> of the knot diagram increases, the total crossing number of a knot exceeds 16, which we describe as a complex knot. Interestingly, we discovered the maximum number of gaps in the BPS spectra associated with complex knot families. Moreover, our observations indicated that as <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mi>p</ib:mi></ib:math> increases, the size of these gaps also expands. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.106011","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Marino’s Conjecture remains underexplored within the framework of SO(N) string dualities. In this article, we investigated the reformulated invariants of one-parameter families of knots [K]p derived from tangle surgery on Manolescu’s quasialternating knot diagrams [C. Manolescu, ]. Within topological string dualities, we have verified Marino’s integrality conjecture for these families of knots up to the Young diagram representation R, with |R|≤2. Furthermore, through our analysis, we have conjectured a closed structure for the extremal refined Bogomol’nyi–Prasad–Sommerfeld (BPS) integers for the torus knots [31]2p+1 and [820]2p+1, p∈Z≥0. As the parameter p of the knot diagram increases, the total crossing number of a knot exceeds 16, which we describe as a complex knot. Interestingly, we discovered the maximum number of gaps in the BPS spectra associated with complex knot families. Moreover, our observations indicated that as p increases, the size of these gaps also expands. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.