Artificial Intelligence in Gastroenterology Education: DeepSeek Passes the Gastroenterology Board Examination and Outperforms Legacy ChatGPT Models.

Andrew F Ibrahim,Pojsakorn Danpanichkul,Alexander Hayek,Edwin Paul,Annmarie Farag,Masab Mansoor,Charat Thongprayoon,Wisit Cheungpasitporn,Mohamed O Othman
{"title":"Artificial Intelligence in Gastroenterology Education: DeepSeek Passes the Gastroenterology Board Examination and Outperforms Legacy ChatGPT Models.","authors":"Andrew F Ibrahim,Pojsakorn Danpanichkul,Alexander Hayek,Edwin Paul,Annmarie Farag,Masab Mansoor,Charat Thongprayoon,Wisit Cheungpasitporn,Mohamed O Othman","doi":"10.14309/ajg.0000000000003552","DOIUrl":null,"url":null,"abstract":"INTRODUCTION\r\nDeepSeek was evaluated in gastroenterology board examination performance against legacy ChatGPT offline models, which previously showed failing performance.\r\n\r\nMETHODS\r\nThe performances of the DeepSeek base R1 model and search-augmented R1 model were assessed using American College of Gastroenterology self-assessments (455 questions).\r\n\r\nRESULTS\r\nDeepSeek exceeded passing threshold. Search-augmented DeepSeek scored 81.5% across all questions, and the R1 base model scored 77.1%. Both search-augmented and offline DeepSeek models surpassed offline ChatGPT-3 (65.1%) and ChatGPT-4 (62.4%) (p < 0.001).\r\n\r\nDISCUSSION\r\nDeepSeek exhibited passing performance on the gastroenterology board examination, but gaps in niche topics and image exclusion limit utility. It may supplement education if validated by specialists.","PeriodicalId":520099,"journal":{"name":"The American Journal of Gastroenterology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Journal of Gastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14309/ajg.0000000000003552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

INTRODUCTION DeepSeek was evaluated in gastroenterology board examination performance against legacy ChatGPT offline models, which previously showed failing performance. METHODS The performances of the DeepSeek base R1 model and search-augmented R1 model were assessed using American College of Gastroenterology self-assessments (455 questions). RESULTS DeepSeek exceeded passing threshold. Search-augmented DeepSeek scored 81.5% across all questions, and the R1 base model scored 77.1%. Both search-augmented and offline DeepSeek models surpassed offline ChatGPT-3 (65.1%) and ChatGPT-4 (62.4%) (p < 0.001). DISCUSSION DeepSeek exhibited passing performance on the gastroenterology board examination, but gaps in niche topics and image exclusion limit utility. It may supplement education if validated by specialists.
胃肠病学教育中的人工智能:DeepSeek通过胃肠病学委员会考试并优于传统ChatGPT模型。
与传统ChatGPT离线模型相比,在胃肠病学委员会考试中对introtiondeepseek进行了评估,而传统ChatGPT离线模型此前表现不佳。方法采用美国胃肠学会(American College of Gastroenterology)自评(455题)对DeepSeek基础R1模型和搜索增强R1模型进行性能评估。结果深度搜索超过通过阈值。搜索增强的DeepSeek在所有问题中得分为81.5%,R1基本模型得分为77.1%。搜索增强和离线DeepSeek模型都超过了离线ChatGPT-3(65.1%)和ChatGPT-4 (62.4%) (p < 0.001)。DISCUSSIONDeepSeek在胃肠病学委员会考试中表现及格,但在利基主题和图像排除方面的差距限制了实用性。如果经过专家验证,它可以补充教育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信