{"title":"Enhancing pathological myopia diagnosis: a bimodal artificial intelligence approach integrating fundus and optical coherence tomography imaging for precise atrophy, traction and neovascularisation grading.","authors":"Zhiyan Xu,Yajie Yang,Huan Chen,Ruo'an Han,Xiaoxu Han,Jianchun Zhao,Weihong Yu,Zhikun Yang,Youxin Chen","doi":"10.1136/bjo-2024-326252","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nPathological myopia (PM) has emerged as a leading cause of global visual impairment, early detection and precise grading of PM are crucial for timely intervention. The atrophy, traction and neovascularisation (ATN) system is applied to define PM progression and stages with precision. This study focuses on constructing a comprehensive PM image dataset comprising both fundus and optical coherence tomography (OCT) images and developing a bimodal artificial intelligence (AI) classification model for ATN grading in PM.\r\n\r\nMETHODS\r\nThis single-centre retrospective cross-sectional study collected 2760 colour fundus photographs and matching OCT images of PM from January 2019 to November 2022 at Peking Union Medical College Hospital. Ophthalmology specialists labelled and inspected all paired images using the ATN grading system. The AI model used a ResNet-50 backbone and a multimodal multi-instance learning module to enhance interaction across instances from both modalities.\r\n\r\nRESULTS\r\nPerformance comparisons among single-modality fundus, OCT and bimodal AI models were conducted for ATN grading in PM. The bimodality model, dual-deep learning (DL), demonstrated superior accuracy in both detailed multiclassification and biclassification of PM, which aligns well with our observation from instance attention-weight activation maps. The area under the curve for severe PM using dual-DL was 0.9635 (95% CI 0.9380 to 0.9890), compared with 0.9359 (95% CI 0.9027 to 0.9691) for the solely OCT model and 0.9268 (95% CI 0.8915 to 0.9621) for the fundus model.\r\n\r\nCONCLUSIONS\r\nOur novel bimodal AI multiclassification model for PM ATN staging proves accurate and beneficial for public health screening and prompt referral of PM patients.","PeriodicalId":9313,"journal":{"name":"British Journal of Ophthalmology","volume":"28 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bjo-2024-326252","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Pathological myopia (PM) has emerged as a leading cause of global visual impairment, early detection and precise grading of PM are crucial for timely intervention. The atrophy, traction and neovascularisation (ATN) system is applied to define PM progression and stages with precision. This study focuses on constructing a comprehensive PM image dataset comprising both fundus and optical coherence tomography (OCT) images and developing a bimodal artificial intelligence (AI) classification model for ATN grading in PM.
METHODS
This single-centre retrospective cross-sectional study collected 2760 colour fundus photographs and matching OCT images of PM from January 2019 to November 2022 at Peking Union Medical College Hospital. Ophthalmology specialists labelled and inspected all paired images using the ATN grading system. The AI model used a ResNet-50 backbone and a multimodal multi-instance learning module to enhance interaction across instances from both modalities.
RESULTS
Performance comparisons among single-modality fundus, OCT and bimodal AI models were conducted for ATN grading in PM. The bimodality model, dual-deep learning (DL), demonstrated superior accuracy in both detailed multiclassification and biclassification of PM, which aligns well with our observation from instance attention-weight activation maps. The area under the curve for severe PM using dual-DL was 0.9635 (95% CI 0.9380 to 0.9890), compared with 0.9359 (95% CI 0.9027 to 0.9691) for the solely OCT model and 0.9268 (95% CI 0.8915 to 0.9621) for the fundus model.
CONCLUSIONS
Our novel bimodal AI multiclassification model for PM ATN staging proves accurate and beneficial for public health screening and prompt referral of PM patients.
期刊介绍:
The British Journal of Ophthalmology (BJO) is an international peer-reviewed journal for ophthalmologists and visual science specialists. BJO publishes clinical investigations, clinical observations, and clinically relevant laboratory investigations related to ophthalmology. It also provides major reviews and also publishes manuscripts covering regional issues in a global context.