Effect of Oil Species on the Viscoelastic Behavior of a Surfactant Film Formed at the Oil/Water Interface.

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hiroki Kuwabara,Koji Tsuchiya,Kyosuke Arakawa,Yoshifumi Yamagata,Kenichi Sakai,Hideki Sakai
{"title":"Effect of Oil Species on the Viscoelastic Behavior of a Surfactant Film Formed at the Oil/Water Interface.","authors":"Hiroki Kuwabara,Koji Tsuchiya,Kyosuke Arakawa,Yoshifumi Yamagata,Kenichi Sakai,Hideki Sakai","doi":"10.1021/acs.langmuir.5c00229","DOIUrl":null,"url":null,"abstract":"Clarifying the viscoelastic properties of oil/water interfacial films is important for evaluating the resistance of emulsions to coalescence. In recent years, strain-controlled rheometers with a bi-cone geometry have gained significant attention for measuring the viscoelasticity of liquid/liquid interfaces. In the present study, we sought to clarify the effect of oil species on the viscoelastic behavior of the oil/water interfacial film formed by a nonionic surfactant (Span 65) and correlate it with an emulsion's stability. A series of interfacial rheological measurements on saturated hydrocarbons with varying alkyl chain lengths as the oil phase showed that the elasticity of the oil/water interfacial film increased as the difference between the alkyl chain length of the oil phase and that of Span 65 increased. The stability of the water-in-oil emulsions prepared using each oil phase also improved with increasing alkyl chain length difference. These results demonstrated that viscoelastic parameters evaluated using this interfacial rheology are promising indicators for predicting the emulsion's stability. From the perspective of differences in the orientations of Span 65 and the oil phase at the interface, we also discussed the mechanism by which the viscoelastic behavior of the interfacial film differs depending on the alkyl chain length of the oil phase.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"4 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00229","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Clarifying the viscoelastic properties of oil/water interfacial films is important for evaluating the resistance of emulsions to coalescence. In recent years, strain-controlled rheometers with a bi-cone geometry have gained significant attention for measuring the viscoelasticity of liquid/liquid interfaces. In the present study, we sought to clarify the effect of oil species on the viscoelastic behavior of the oil/water interfacial film formed by a nonionic surfactant (Span 65) and correlate it with an emulsion's stability. A series of interfacial rheological measurements on saturated hydrocarbons with varying alkyl chain lengths as the oil phase showed that the elasticity of the oil/water interfacial film increased as the difference between the alkyl chain length of the oil phase and that of Span 65 increased. The stability of the water-in-oil emulsions prepared using each oil phase also improved with increasing alkyl chain length difference. These results demonstrated that viscoelastic parameters evaluated using this interfacial rheology are promising indicators for predicting the emulsion's stability. From the perspective of differences in the orientations of Span 65 and the oil phase at the interface, we also discussed the mechanism by which the viscoelastic behavior of the interfacial film differs depending on the alkyl chain length of the oil phase.
油种类对油水界面表面活性剂膜粘弹性行为的影响
阐明油水界面膜的粘弹性特性对评价乳状液的抗聚结性具有重要意义。近年来,具有双锥几何形状的应变控制流变仪在测量液/液界面粘弹性方面受到了广泛关注。在本研究中,我们试图阐明油的种类对非离子表面活性剂形成的油/水界面膜粘弹性行为的影响,并将其与乳液的稳定性联系起来。对油相烷基链长度不同的饱和烃进行了一系列界面流变学测试,结果表明,随着油相烷基链长度与Span 65烷基链长度差的增大,油水界面膜的弹性增大。各油相制备的油包水乳液的稳定性也随着烷基链长差的增大而提高。这些结果表明,用这种界面流变性评估的粘弹性参数是预测乳液稳定性的有希望的指标。从Span 65和油相在界面处的取向差异的角度,讨论了油相烷基链长度对界面膜粘弹性行为影响的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信