{"title":"Deciphering Coulombic Efficiency of Lithium Metal Anodes by Screening Electrolyte Properties.","authors":"Zhao Zheng,Xinyan Liu,Xue-Qiang Zhang,Shu-Yu Sun,Jia-Lin Li,Ya-Nan Wang,Nan Yao,Dong-Hao Zhan,Wen-Jun Feng,Hong-Jie Peng,Jiang-Kui Hu,Jia-Qi Huang,Qiang Zhang","doi":"10.1002/anie.202507387","DOIUrl":null,"url":null,"abstract":"Coulombic efficiency (CE) is a quantifiable indicator for the reversibility of lithium metal anodes in high-energy-density batteries. However, the quantitative relationship between CE and electrolyte properties has yet to be established, impeding rational electrolyte design. Herein, an interpretable model for estimating CE based on data-driven insights of electrolyte properties is proposed. Hydrogenbond acceptor basicity (β) and the energy level gap between the lowest unoccupied and the highest occupied molecular orbital (HOMO-LUMO gap) of solvents are identified as the top two parameters impacting CE by machine learning. β and HOMO-LUMO gap of solvents govern anode interphase chemistry. A regression model is further proposed to estimate the CE based on β and HOMOLUMO gap. Using the new solvent screened by above regression model, the Li metal anode in the pouch cell with an energy density of 418 Wh kg-1 achieves the highest CE of 99.2%, which is much larger than previous CE ranging from 70-98.5%. This work provides a reliable interpretable quantitative model for rational electrolyte design.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":"e202507387"},"PeriodicalIF":16.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202507387","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coulombic efficiency (CE) is a quantifiable indicator for the reversibility of lithium metal anodes in high-energy-density batteries. However, the quantitative relationship between CE and electrolyte properties has yet to be established, impeding rational electrolyte design. Herein, an interpretable model for estimating CE based on data-driven insights of electrolyte properties is proposed. Hydrogenbond acceptor basicity (β) and the energy level gap between the lowest unoccupied and the highest occupied molecular orbital (HOMO-LUMO gap) of solvents are identified as the top two parameters impacting CE by machine learning. β and HOMO-LUMO gap of solvents govern anode interphase chemistry. A regression model is further proposed to estimate the CE based on β and HOMOLUMO gap. Using the new solvent screened by above regression model, the Li metal anode in the pouch cell with an energy density of 418 Wh kg-1 achieves the highest CE of 99.2%, which is much larger than previous CE ranging from 70-98.5%. This work provides a reliable interpretable quantitative model for rational electrolyte design.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.