Coulomb Blockade and Possible Luttinger Liquid Behaviors in Encapsulated High-Mobility Graphene Nanoribbons.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peiyue Shen,Bosai Lyu,Zhenghan Wu,Liguo Wang,Zhichun Zhang,Xianliang Zhou,Shuo Lou,Jiajun Chen,Saiqun Ma,Yufeng Xie,Yi Chen,Kunqi Xu,Kenji Watanabe,Takashi Taniguchi,Guohua Wang,Dong Qian,Qi Liang,Wei Yang,Guangyu Zhang,Zhiwen Shi
{"title":"Coulomb Blockade and Possible Luttinger Liquid Behaviors in Encapsulated High-Mobility Graphene Nanoribbons.","authors":"Peiyue Shen,Bosai Lyu,Zhenghan Wu,Liguo Wang,Zhichun Zhang,Xianliang Zhou,Shuo Lou,Jiajun Chen,Saiqun Ma,Yufeng Xie,Yi Chen,Kunqi Xu,Kenji Watanabe,Takashi Taniguchi,Guohua Wang,Dong Qian,Qi Liang,Wei Yang,Guangyu Zhang,Zhiwen Shi","doi":"10.1021/acs.nanolett.4c06064","DOIUrl":null,"url":null,"abstract":"Graphene nanoribbons (GNRs) are highly promising for exploring one-dimensional (1D) correlation physics and constructing digital logic circuits. Here, we report the intrinsic electrical transport behaviors of GNR field-effect transistors (FETs) fabricated using GNRs in situ encapsulated by hexagonal boron nitride (hBN) flakes. The FET devices exhibit excellent performance at room temperature: mobility up to ∼5000 cm2 V-1 s-1, on/off ratio up to ∼106, and subthreshold swing down to ∼70 mV dec-1. The devices exhibit periodic conductance peaks and regular Coulomb diamonds due to strong electron-electron repulsion at cryogenic temperatures. Additionally, conductance of the GNR devices exhibits power-law dependence and universal scaling, signatures of Luttinger liquid behaviors, with a tunable Luttinger parameter g ranging from 0.1 to 0.3. Our study demonstrates that the in situ encapsulated GNRs can function as both high-performance FET devices and strongly interacting 1D quantum systems, providing an ideal platform for studying 1D transport and correlated physics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"40 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06064","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene nanoribbons (GNRs) are highly promising for exploring one-dimensional (1D) correlation physics and constructing digital logic circuits. Here, we report the intrinsic electrical transport behaviors of GNR field-effect transistors (FETs) fabricated using GNRs in situ encapsulated by hexagonal boron nitride (hBN) flakes. The FET devices exhibit excellent performance at room temperature: mobility up to ∼5000 cm2 V-1 s-1, on/off ratio up to ∼106, and subthreshold swing down to ∼70 mV dec-1. The devices exhibit periodic conductance peaks and regular Coulomb diamonds due to strong electron-electron repulsion at cryogenic temperatures. Additionally, conductance of the GNR devices exhibits power-law dependence and universal scaling, signatures of Luttinger liquid behaviors, with a tunable Luttinger parameter g ranging from 0.1 to 0.3. Our study demonstrates that the in situ encapsulated GNRs can function as both high-performance FET devices and strongly interacting 1D quantum systems, providing an ideal platform for studying 1D transport and correlated physics.
封装高迁移率石墨烯纳米带中的库仑阻塞和可能的Luttinger液体行为。
石墨烯纳米带在探索一维(1D)相关物理和构建数字逻辑电路方面具有很大的应用前景。本文报道了用六方氮化硼(hBN)片封装GNR原位制备的GNR场效应晶体管(fet)的本征电输运行为。FET器件在室温下表现出优异的性能:迁移率高达~ 5000 cm2 V-1 s-1,开/关比高达~ 106,亚阈值摆幅降至~ 70 mV dec1。在低温下,由于强烈的电子-电子斥力,器件表现出周期性的电导峰和规则的库仑钻石。此外,GNR器件的电导表现出幂律依赖性和普遍标度性,是Luttinger液体行为的特征,Luttinger参数g在0.1到0.3之间可调。我们的研究表明,原位封装的gnr既可以作为高性能场效应管器件,又可以作为强相互作用的一维量子系统,为研究一维输运和相关物理提供了理想的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信