The Bacterial Outer Membrane Vesicle-Cloaked Immunostimulatory Nanoplatform Reinvigorates T Cell Function and Reprograms Tumor Immunity.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-20 DOI:10.1021/acsnano.5c02541
Yu-Han Lin,Chia-Wei Chen,Mei-Yi Chen,Li Xu,Xuejiao Tian,Siu-Hung Cheung,Yen-Ling Wu,Natnaree Siriwon,Si-Han Wu,Kurt Yun Mou
{"title":"The Bacterial Outer Membrane Vesicle-Cloaked Immunostimulatory Nanoplatform Reinvigorates T Cell Function and Reprograms Tumor Immunity.","authors":"Yu-Han Lin,Chia-Wei Chen,Mei-Yi Chen,Li Xu,Xuejiao Tian,Siu-Hung Cheung,Yen-Ling Wu,Natnaree Siriwon,Si-Han Wu,Kurt Yun Mou","doi":"10.1021/acsnano.5c02541","DOIUrl":null,"url":null,"abstract":"Bacterial outer membrane vesicles (OMVs) represent powerful immunoadjuvant nanocarriers with the capacity to reprogram the tumor microenvironment (TME) and activate immune responses. Here, we investigate a nanotherapeutic platform integrating immunostimulatory cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODNs, hereafter termed CpG) into mesoporous silica nanoparticles cloaked with OMVs (CpG@MSN-PEG/PEI@OMVs) for cancer immunotherapy. Systemic administration of these nanohybrids facilitates precise tumor targeting, induces antitumor cytokines such as IFNγ, and suppresses immunosuppressive cytokine TGF-β, reshaping the TME. Additionally, CpG@MSN-PEG/PEI@OMVs promote M1 macrophage polarization, dendritic cell maturation, and the generation of durable tumor-specific immune memory, resulting in pronounced tumor regression with minimal systemic toxicity. The platform demonstrates efficacy against metastatic and solid tumor models including 4T1 breast and MC38 colorectal cancers. Transcriptomic analyses reveal that CpG@MSN-PEG/PEI@OMVs enhance mitochondrial oxidative phosphorylation in T cells within tumor-draining lymph nodes, mitigating T cell exhaustion and restoring metabolic fitness. These results support the potential of CpG@MSN-PEG/PEI@OMVs as a modular nanoplatform to modulate innate and adaptive immunity in cancer immunotherapy.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"32 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02541","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial outer membrane vesicles (OMVs) represent powerful immunoadjuvant nanocarriers with the capacity to reprogram the tumor microenvironment (TME) and activate immune responses. Here, we investigate a nanotherapeutic platform integrating immunostimulatory cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODNs, hereafter termed CpG) into mesoporous silica nanoparticles cloaked with OMVs (CpG@MSN-PEG/PEI@OMVs) for cancer immunotherapy. Systemic administration of these nanohybrids facilitates precise tumor targeting, induces antitumor cytokines such as IFNγ, and suppresses immunosuppressive cytokine TGF-β, reshaping the TME. Additionally, CpG@MSN-PEG/PEI@OMVs promote M1 macrophage polarization, dendritic cell maturation, and the generation of durable tumor-specific immune memory, resulting in pronounced tumor regression with minimal systemic toxicity. The platform demonstrates efficacy against metastatic and solid tumor models including 4T1 breast and MC38 colorectal cancers. Transcriptomic analyses reveal that CpG@MSN-PEG/PEI@OMVs enhance mitochondrial oxidative phosphorylation in T cells within tumor-draining lymph nodes, mitigating T cell exhaustion and restoring metabolic fitness. These results support the potential of CpG@MSN-PEG/PEI@OMVs as a modular nanoplatform to modulate innate and adaptive immunity in cancer immunotherapy.
细菌外膜囊泡覆盖的免疫刺激纳米平台激活T细胞功能并重新编程肿瘤免疫。
细菌外膜囊泡(omv)是一种强大的免疫佐剂纳米载体,具有重编程肿瘤微环境(TME)和激活免疫反应的能力。在这里,我们研究了一种纳米治疗平台,将免疫刺激胞嘧啶-磷酸-鸟嘌呤寡聚脱氧核苷酸(CpG- odns,以下简称CpG)整合到包有omv (CpG@MSN-PEG/PEI@OMVs)的介孔二氧化硅纳米颗粒中,用于癌症免疫治疗。系统给药这些纳米杂合体有助于精确靶向肿瘤,诱导抗肿瘤细胞因子如IFNγ,抑制免疫抑制细胞因子TGF-β,重塑TME。此外,CpG@MSN-PEG/PEI@OMVs促进M1巨噬细胞极化,树突状细胞成熟,并产生持久的肿瘤特异性免疫记忆,导致肿瘤明显消退,全身毒性最小。该平台对包括4T1乳腺癌和MC38结直肠癌在内的转移性和实体肿瘤模型具有疗效。转录组学分析显示CpG@MSN-PEG/PEI@OMVs增强肿瘤引流淋巴结内T细胞的线粒体氧化磷酸化,减轻T细胞衰竭,恢复代谢适应性。这些结果支持CpG@MSN-PEG/PEI@OMVs作为模块化纳米平台在癌症免疫治疗中调节先天免疫和适应性免疫的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信