{"title":"Predicting Placebo Responses Using EEG and Deep Convolutional Neural Networks: Correlations with Clinical Data Across Three Independent Datasets.","authors":"Mariam Khayretdinova, Polina Pshonkovskaya, Ilya Zakharov, Timothy Adamovich, Andrey Kiryasov, Andrey Zhdanov, Alexey Shovkun","doi":"10.1007/s12021-025-09725-6","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying likely placebo responders can help design more efficient clinical trials by stratifying participants, reducing sample size requirements, and enhancing the detection of true drug effects. In response to this need, we developed a deep convolutional neural network (DCNN) model using resting-state EEG data from the EMBARC study, achieving a balanced accuracy of 69% in predicting placebo responses in patients with major depressive disorder (MDD). We then applied this model to two additional datasets, LEMON and CAN-BIND-which did not include placebo groups-to investigate potential relationships between the model's predictions and various clinical features in independent samples. Notably, the model's predictions correlated with factors previously linked to placebo response in MDD, including age, extraversion, and cognitive processing speed. These findings highlight several factors associated with placebo susceptibility, offering insights that could guide more efficient clinical trial designs. Future research should explore the broader applicability of such predictive models across different medical conditions, and replicate the current EEG-based model of placebo response in independent samples.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"32"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089153/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-025-09725-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying likely placebo responders can help design more efficient clinical trials by stratifying participants, reducing sample size requirements, and enhancing the detection of true drug effects. In response to this need, we developed a deep convolutional neural network (DCNN) model using resting-state EEG data from the EMBARC study, achieving a balanced accuracy of 69% in predicting placebo responses in patients with major depressive disorder (MDD). We then applied this model to two additional datasets, LEMON and CAN-BIND-which did not include placebo groups-to investigate potential relationships between the model's predictions and various clinical features in independent samples. Notably, the model's predictions correlated with factors previously linked to placebo response in MDD, including age, extraversion, and cognitive processing speed. These findings highlight several factors associated with placebo susceptibility, offering insights that could guide more efficient clinical trial designs. Future research should explore the broader applicability of such predictive models across different medical conditions, and replicate the current EEG-based model of placebo response in independent samples.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.