Shencheng Ren, Junkan Zhu, Guangyao Shan, Jiaqi Liang, Yunyi Bian, Han Lin, Haochun Shi, Binyang Pan, Guangyin Zhao, Huiqin Yang, Xiaolong Huang, Cheng Zhan, Di Ge, Guoshu Bi
{"title":"Transcription factor ZNF266 suppresses cancer progression by modulating CA9-mediated intracellular pH alteration in lung adenocarcinoma.","authors":"Shencheng Ren, Junkan Zhu, Guangyao Shan, Jiaqi Liang, Yunyi Bian, Han Lin, Haochun Shi, Binyang Pan, Guangyin Zhao, Huiqin Yang, Xiaolong Huang, Cheng Zhan, Di Ge, Guoshu Bi","doi":"10.1186/s12931-025-03278-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung cancer remains the leading cause of cancer-related mortality globally, with lung adenocarcinoma (LUAD) being the most prevalent subtype. Despite extensive research efforts, the role of transcription factors in LUAD progression remains largely uncharacterized. In this study, we focused on ZNF266, a transcription factor whose impacts on LUAD have not been investigated.</p><p><strong>Methods: </strong>Using high-throughput sequencing data, we observed a significant downregulation of ZNF266 expression in LUAD tissues. To validate this finding, we conducted a retrospective analysis of nearly three thousand LUAD patients' data from public databases and our institution. Functional studies were performed using cell lines, organoids, and xenograft models to assess the role of ZNF266 in LUAD progression. RNA sequencing, chromatin immunoprecipitation, DNA pull-down assays, and dual-luciferase reporter assays were employed to elucidate the underlying mechanism. Additionally, adeno-associated virus (AAV)-mediated overexpression of ZNF266 was used to evaluate its therapeutic potential.</p><p><strong>Results: </strong>Patients with low ZNF266 expression had poorer prognosis compared to those with high expression. ZNF266 inhibits the malignant phenotypes of LUAD, including proliferation, migration, and invasion. Mechanistically, ZNF266 binds to the promoter region of CA9, suppressing its transcription. This leads to a reduction in intracellular pH and subsequent inhibition of the mTOR signaling pathway, which is crucial for cancer cell growth and survival. Furthermore, AAV-mediated overexpression of ZNF266 significantly inhibited tumor growth in patient-derived xenograft models.</p><p><strong>Conclusions: </strong>Our study demonstrated that ZNF266 inhibits LUAD progression in a pH-dependent manner via modulating CA9 expression, uncovering its therapeutic significance for LUAD treatment.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"191"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-025-03278-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Lung cancer remains the leading cause of cancer-related mortality globally, with lung adenocarcinoma (LUAD) being the most prevalent subtype. Despite extensive research efforts, the role of transcription factors in LUAD progression remains largely uncharacterized. In this study, we focused on ZNF266, a transcription factor whose impacts on LUAD have not been investigated.
Methods: Using high-throughput sequencing data, we observed a significant downregulation of ZNF266 expression in LUAD tissues. To validate this finding, we conducted a retrospective analysis of nearly three thousand LUAD patients' data from public databases and our institution. Functional studies were performed using cell lines, organoids, and xenograft models to assess the role of ZNF266 in LUAD progression. RNA sequencing, chromatin immunoprecipitation, DNA pull-down assays, and dual-luciferase reporter assays were employed to elucidate the underlying mechanism. Additionally, adeno-associated virus (AAV)-mediated overexpression of ZNF266 was used to evaluate its therapeutic potential.
Results: Patients with low ZNF266 expression had poorer prognosis compared to those with high expression. ZNF266 inhibits the malignant phenotypes of LUAD, including proliferation, migration, and invasion. Mechanistically, ZNF266 binds to the promoter region of CA9, suppressing its transcription. This leads to a reduction in intracellular pH and subsequent inhibition of the mTOR signaling pathway, which is crucial for cancer cell growth and survival. Furthermore, AAV-mediated overexpression of ZNF266 significantly inhibited tumor growth in patient-derived xenograft models.
Conclusions: Our study demonstrated that ZNF266 inhibits LUAD progression in a pH-dependent manner via modulating CA9 expression, uncovering its therapeutic significance for LUAD treatment.
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.