Christian A Webb, Boyu Ren, Habiballah Rahimi-Eichi, Bryce W Gillis, Yoonho Chung, Justin T Baker
{"title":"Personalized prediction of negative affect in individuals with serious mental illness followed using long-term multimodal mobile phenotyping.","authors":"Christian A Webb, Boyu Ren, Habiballah Rahimi-Eichi, Bryce W Gillis, Yoonho Chung, Justin T Baker","doi":"10.1038/s41398-025-03394-4","DOIUrl":null,"url":null,"abstract":"<p><p>Heightened negative affect is a core feature of serious mental illness. Over 90% of American adults own a smartphone, equipped with an array of sensors which can continuously and unobtrusively measure behaviors (e.g., activity levels, location, and phone usage patterns) which may predict increases in negative affect in real-time in individuals' daily lives. Sixty-eight adults with a primary mood or psychotic disorder completed daily emotion surveys for over a year, on average (mean 465 days; total surveys = 12,959). At the same time, semi-continuous collection of smartphone accelerometer, GPS location, and screen usage data, along with accelerometer tracking from a wrist-worn wearable device, was conducted for the duration of the study. A range of statistical approaches, including a novel personalized ensemble machine learning algorithm, were compared in their ability to predict states of heightened negative affect. A personalized ensemble machine learning algorithm outperformed other statistical approaches, achieving an area under the receiver operating characteristic curve (AUC) of 0.72 (for irritability) -0.79 (for loneliness) in predicting different negative emotions. Smartphone location (GPS) variables were the most predictive features overall. Critically, there was substantial heterogeneity between individuals in the association between smartphone features and negative emotional states, which highlights the need for a personalized modeling approach. Findings support the use of smartphones coupled with machine learning to detect states of heightened negative emotions. The ability to predict these states in real-time could inform the development and timely delivery of emotionally beneficial smartphone-delivered interventions which could be automatically triggered via a predictive algorithm.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"174"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03394-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Heightened negative affect is a core feature of serious mental illness. Over 90% of American adults own a smartphone, equipped with an array of sensors which can continuously and unobtrusively measure behaviors (e.g., activity levels, location, and phone usage patterns) which may predict increases in negative affect in real-time in individuals' daily lives. Sixty-eight adults with a primary mood or psychotic disorder completed daily emotion surveys for over a year, on average (mean 465 days; total surveys = 12,959). At the same time, semi-continuous collection of smartphone accelerometer, GPS location, and screen usage data, along with accelerometer tracking from a wrist-worn wearable device, was conducted for the duration of the study. A range of statistical approaches, including a novel personalized ensemble machine learning algorithm, were compared in their ability to predict states of heightened negative affect. A personalized ensemble machine learning algorithm outperformed other statistical approaches, achieving an area under the receiver operating characteristic curve (AUC) of 0.72 (for irritability) -0.79 (for loneliness) in predicting different negative emotions. Smartphone location (GPS) variables were the most predictive features overall. Critically, there was substantial heterogeneity between individuals in the association between smartphone features and negative emotional states, which highlights the need for a personalized modeling approach. Findings support the use of smartphones coupled with machine learning to detect states of heightened negative emotions. The ability to predict these states in real-time could inform the development and timely delivery of emotionally beneficial smartphone-delivered interventions which could be automatically triggered via a predictive algorithm.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.