Carla den Ouden, Máire Kashyap, Morgan Kikkawa, Daniel Feuerriegel
{"title":"Limited Evidence for Probabilistic Cueing Effects on Grating-Evoked Event-Related Potentials and Orientation Decoding Performance.","authors":"Carla den Ouden, Máire Kashyap, Morgan Kikkawa, Daniel Feuerriegel","doi":"10.1111/psyp.70076","DOIUrl":null,"url":null,"abstract":"<p><p>We can rapidly learn recurring patterns that occur within our sensory environments. This knowledge allows us to form expectations about future sensory events. Several influential predictive coding models posit that, when a stimulus matches our expectations, the activity of feature-selective neurons in the visual cortex will be suppressed relative to when that stimulus is unexpected. However, after accounting for known critical confounds, there is currently scant evidence for these hypothesized effects from studies recording electrophysiological neural activity. To provide a strong test for expectation effects on stimulus-evoked responses in the visual cortex, we performed a probabilistic cueing experiment while recording electroencephalographic (EEG) data. Participants (n = 48) learned associations between visual cues and subsequently presented gratings. A given cue predicted the appearance of a certain grating orientation with 10%, 25%, 50%, 75%, or 90% validity. We did not observe any stimulus expectancy effects on grating-evoked event-related potentials. Multivariate classifiers trained to discriminate between grating orientations performed better when classifying 10% compared to 90% probability gratings. However, classification performance did not substantively differ across any other stimulus expectancy conditions. Our findings provide very limited evidence for modulations of prediction error signaling by probabilistic expectations as specified in contemporary predictive coding models.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":"62 5","pages":"e70076"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.70076","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We can rapidly learn recurring patterns that occur within our sensory environments. This knowledge allows us to form expectations about future sensory events. Several influential predictive coding models posit that, when a stimulus matches our expectations, the activity of feature-selective neurons in the visual cortex will be suppressed relative to when that stimulus is unexpected. However, after accounting for known critical confounds, there is currently scant evidence for these hypothesized effects from studies recording electrophysiological neural activity. To provide a strong test for expectation effects on stimulus-evoked responses in the visual cortex, we performed a probabilistic cueing experiment while recording electroencephalographic (EEG) data. Participants (n = 48) learned associations between visual cues and subsequently presented gratings. A given cue predicted the appearance of a certain grating orientation with 10%, 25%, 50%, 75%, or 90% validity. We did not observe any stimulus expectancy effects on grating-evoked event-related potentials. Multivariate classifiers trained to discriminate between grating orientations performed better when classifying 10% compared to 90% probability gratings. However, classification performance did not substantively differ across any other stimulus expectancy conditions. Our findings provide very limited evidence for modulations of prediction error signaling by probabilistic expectations as specified in contemporary predictive coding models.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.