Mahkameh Salehi, Ville Laitinen, Shivang Bhanushali, Johan Bengtsson-Palme, Peter Collignon, John J Beggs, Katariina Pärnänen, Leo Lahti
{"title":"Gender differences in global antimicrobial resistance.","authors":"Mahkameh Salehi, Ville Laitinen, Shivang Bhanushali, Johan Bengtsson-Palme, Peter Collignon, John J Beggs, Katariina Pärnänen, Leo Lahti","doi":"10.1038/s41522-025-00715-9","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance is one of the leading causes of mortality globally. However, little is known about the distribution of antibiotic resistance genes (ARGs) in human gut metagenomes, collectively referred to as the resistome, across socio-demographic gradients. In particular, limited evidence exists on gender-based differences. We investigated how the resistomes differ between women and men in a global dataset of 14,641 publicly available human gut metagenomes encompassing countries with widely variable economic statuses. We observed a 9% higher total ARG load in women than in men in high-income countries. However, in low- and middle-income countries, the difference between genders was reversed in univariate models, but not significant after adjusting for covariates. Interestingly, the differences in ARG load between genders emerged in adulthood, suggesting resistomes differentiate between genders after childhood. Collectively, our data-driven analyses shed light on global, gendered antibiotic resistance patterns, which may help guide further research and targeted interventions.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"79"},"PeriodicalIF":9.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00715-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance is one of the leading causes of mortality globally. However, little is known about the distribution of antibiotic resistance genes (ARGs) in human gut metagenomes, collectively referred to as the resistome, across socio-demographic gradients. In particular, limited evidence exists on gender-based differences. We investigated how the resistomes differ between women and men in a global dataset of 14,641 publicly available human gut metagenomes encompassing countries with widely variable economic statuses. We observed a 9% higher total ARG load in women than in men in high-income countries. However, in low- and middle-income countries, the difference between genders was reversed in univariate models, but not significant after adjusting for covariates. Interestingly, the differences in ARG load between genders emerged in adulthood, suggesting resistomes differentiate between genders after childhood. Collectively, our data-driven analyses shed light on global, gendered antibiotic resistance patterns, which may help guide further research and targeted interventions.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.