Non-rhythmic modulators of the circadian system: A new class of circadian modulators.

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Leonardo Vinícius Monteiro de Assis, Henrik Oster
{"title":"Non-rhythmic modulators of the circadian system: A new class of circadian modulators.","authors":"Leonardo Vinícius Monteiro de Assis, Henrik Oster","doi":"10.1016/bs.ircmb.2024.04.003","DOIUrl":null,"url":null,"abstract":"<p><p>The temporal organization of biological processes is critical for an organism's fitness and survival. An internal circadian clock network coordinates the alignment between the external and internal milieus via an array of systemic factors carrying temporal information such as core body temperature, autonomic activity, hormonal secretion, and behavioral functions. Collectively, these so called zeitgebers are characterized by strong temporal variations (i.e., high amplitudes). At the same time, target tissues show time windows of highest and lowest sensitivity to specific zeitgebers and, in this way, tissues can further modulate the effect of zeitgeber input in a process known as circadian gating. Such interplay between systemic signals and local circadian gating, however, suggests an additional level of temporal control-the resetting of target tissue rhythms in response to altered levels of tonic (i.e., non-rhythmic) signals. The recently identified tuning of liver transcriptome rhythms by thyroid hormones (THs) is one example of such regulation. THs show low-amplitude rhythms in the serum levels that are easily disrupted by altered thyroid states. At the same time, circadian rhythms in TH target tissues, such as liver, are markedly affected by alterations in TH state. Temporal regulation of TH target genes in other tissues suggests similar effects across the body. This chapter describes the rationale, experimental evidence, and potential consequences of this new level of circadian regulators.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":"393 ","pages":"141-162"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2024.04.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The temporal organization of biological processes is critical for an organism's fitness and survival. An internal circadian clock network coordinates the alignment between the external and internal milieus via an array of systemic factors carrying temporal information such as core body temperature, autonomic activity, hormonal secretion, and behavioral functions. Collectively, these so called zeitgebers are characterized by strong temporal variations (i.e., high amplitudes). At the same time, target tissues show time windows of highest and lowest sensitivity to specific zeitgebers and, in this way, tissues can further modulate the effect of zeitgeber input in a process known as circadian gating. Such interplay between systemic signals and local circadian gating, however, suggests an additional level of temporal control-the resetting of target tissue rhythms in response to altered levels of tonic (i.e., non-rhythmic) signals. The recently identified tuning of liver transcriptome rhythms by thyroid hormones (THs) is one example of such regulation. THs show low-amplitude rhythms in the serum levels that are easily disrupted by altered thyroid states. At the same time, circadian rhythms in TH target tissues, such as liver, are markedly affected by alterations in TH state. Temporal regulation of TH target genes in other tissues suggests similar effects across the body. This chapter describes the rationale, experimental evidence, and potential consequences of this new level of circadian regulators.

昼夜节律系统的非节律调制器:一类新的昼夜节律调制器。
生物过程的时间组织对生物体的适应性和生存至关重要。内部生物钟网络通过一系列携带时间信息的系统因素,如核心体温、自主神经活动、激素分泌和行为功能,协调外部和内部环境之间的一致性。总的来说,这些所谓的授时因子具有强烈的时间变化(即高振幅)的特征。同时,靶组织显示出对特定授时因子最高和最低敏感性的时间窗口,通过这种方式,组织可以在一个称为昼夜节律门控的过程中进一步调节授时因子输入的影响。然而,系统信号和局部昼夜节律门控之间的这种相互作用表明了另一种水平的时间控制——目标组织节律的重置是对音调(即非节奏性)信号水平改变的反应。最近发现的甲状腺激素(THs)调节肝脏转录组节律就是这种调节的一个例子。这表明血清水平的低振幅节律很容易因甲状腺状态改变而中断。同时,TH靶组织(如肝脏)的昼夜节律明显受到TH状态改变的影响。在其他组织中对TH靶基因的时间调控表明在全身范围内也有类似的作用。本章描述了这种新水平的昼夜节律调节器的基本原理、实验证据和潜在后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International review of cell and molecular biology
International review of cell and molecular biology BIOCHEMISTRY & MOLECULAR BIOLOGY-CELL BIOLOGY
CiteScore
7.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信