{"title":"Paclitaxel, interferons and functional reprogramming of tumor-associated macrophages in optimized chemo-immunotherapy.","authors":"Pawel Kalinski, Kathleen M Kokolus, Shipra Gandhi","doi":"10.1136/jitc-2024-010960","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibition (ICI) targeting programmed cell death protein-1 (PD1) prevents the elimination of activated cytotoxic T lymphocytes (CTLs) by programmed death-ligand 1/2-expressing cancer and myeloid cells in the tumor microenvironment (TME). ICI has shown its effectiveness in many solid tumors, but it lacks activity against \"cold\" tumors which lack CTL infiltration, including most of the colon, prostate, lung and breast cancers. Metastatic triple-negative breast cancer (TNBC) responds to PD-1 blockade only in 5-20% cases. Chemotherapy has been shown to have a PD1-sensitizing effect in a fraction of patients with TNBC but the underlying mechanism and the reasoning behind its limitation to only a subset of patients are unknown. Recent data demonstrate the key roles played by paclitaxel-driven Toll-like receptor 4 (TLR4) signaling and the resulting activation of type-1 and type-2 interferon pathways in tumor-associated macrophages, resulting in local M2 to M1 transition and enhanced tumor antigen cross-presentation, in the paclitaxel-driven sensitization of \"cold\" tumors to ICI. These data and the known ability of the TLR4-activated MyD88-NFκB pathway to mobilize both antitumor and tumor-promoting events in the TME provide new tools to enhance the efficacy of chemo-immunotherapy for metastatic, and potentially early, TNBC and other taxane-sensitive cancers.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 5","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-010960","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint inhibition (ICI) targeting programmed cell death protein-1 (PD1) prevents the elimination of activated cytotoxic T lymphocytes (CTLs) by programmed death-ligand 1/2-expressing cancer and myeloid cells in the tumor microenvironment (TME). ICI has shown its effectiveness in many solid tumors, but it lacks activity against "cold" tumors which lack CTL infiltration, including most of the colon, prostate, lung and breast cancers. Metastatic triple-negative breast cancer (TNBC) responds to PD-1 blockade only in 5-20% cases. Chemotherapy has been shown to have a PD1-sensitizing effect in a fraction of patients with TNBC but the underlying mechanism and the reasoning behind its limitation to only a subset of patients are unknown. Recent data demonstrate the key roles played by paclitaxel-driven Toll-like receptor 4 (TLR4) signaling and the resulting activation of type-1 and type-2 interferon pathways in tumor-associated macrophages, resulting in local M2 to M1 transition and enhanced tumor antigen cross-presentation, in the paclitaxel-driven sensitization of "cold" tumors to ICI. These data and the known ability of the TLR4-activated MyD88-NFκB pathway to mobilize both antitumor and tumor-promoting events in the TME provide new tools to enhance the efficacy of chemo-immunotherapy for metastatic, and potentially early, TNBC and other taxane-sensitive cancers.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.