Youzhen Pu, Wenlong Lin, Suyi Ren, Yuxu Gao, Guiming Wang
{"title":"The therapeutic potential of hydrogen sulfide and its donors, a new discovery in vascular diseases.","authors":"Youzhen Pu, Wenlong Lin, Suyi Ren, Yuxu Gao, Guiming Wang","doi":"10.1097/FJC.0000000000001714","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Hydrogen sulfide (H 2 S), an important gaseous signaling molecule, plays a critical role in maintaining vascular homeostasis. H 2 S participates in numerous biological functions, including redox regulation, interactions with other signaling molecules, and post-translational modifications of proteins through sulfhydration. Additionally, H 2 S influences key pathological processes such as inflammation, oxidative stress, and cell apoptosis. Dysregulation of endogenous H 2 S metabolism has been closely linked to the development of various vascular diseases, including aortic aneurysms, aortic dissection, atherosclerosis, and thrombotic conditions. Various endogenous and exogenous H 2 S donors have been developed, and these donors have demonstrated promising effects in preclinical models of vascular diseases such as atherosclerosis, pulmonary hypertension, and thrombosis by modulating oxidative stress, inflammatory pathways, and vascular remodeling. This review consolidates the current knowledge on the effects of H 2 S on vascular function and offers a comprehensive summary of recent advancements in the development and application of H 2 S donors in vascular disease research.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FJC.0000000000001714","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Hydrogen sulfide (H 2 S), an important gaseous signaling molecule, plays a critical role in maintaining vascular homeostasis. H 2 S participates in numerous biological functions, including redox regulation, interactions with other signaling molecules, and post-translational modifications of proteins through sulfhydration. Additionally, H 2 S influences key pathological processes such as inflammation, oxidative stress, and cell apoptosis. Dysregulation of endogenous H 2 S metabolism has been closely linked to the development of various vascular diseases, including aortic aneurysms, aortic dissection, atherosclerosis, and thrombotic conditions. Various endogenous and exogenous H 2 S donors have been developed, and these donors have demonstrated promising effects in preclinical models of vascular diseases such as atherosclerosis, pulmonary hypertension, and thrombosis by modulating oxidative stress, inflammatory pathways, and vascular remodeling. This review consolidates the current knowledge on the effects of H 2 S on vascular function and offers a comprehensive summary of recent advancements in the development and application of H 2 S donors in vascular disease research.
期刊介绍:
Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias.
Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.