Su Su Thae Hnit, Ling Bi, Chanlu Xie, Ling Xu, Yi Zhong, Ming Yang, Yan Wang, Qihan Dong
{"title":"Inhibition of Dormant Lung Cancer Cell Reactivation by <i>Punica Granatum Peel</i> and <i>Dioscorea Nipponica</i>: Involving MYC, SKP2 and p27.","authors":"Su Su Thae Hnit, Ling Bi, Chanlu Xie, Ling Xu, Yi Zhong, Ming Yang, Yan Wang, Qihan Dong","doi":"10.2147/DDDT.S494168","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Dormant cancer cells, capable of reactivating from the G<sub>0</sub> phase, drive tumor recurrence and therapy resistance. Current clinical strategies targeting dormancy remain limited. This study evaluates Punica granatum peel (PGP) and Dioscorea Nipponica (DN) for their ability to sustain dormancy in lung cancer cells and inhibit reactivation.</p><p><strong>Methods: </strong>Dormancy was induced in A549 and H460 lung cancer cells via contact inhibition or serum deprivation. Subcutaneous and orthotopic xenograft mouse models were employed. Cells and mice were treated with PGP, DN, or their combination. SYBR Green assays, flow cytometry, and immunoblotting assessed DNA synthesis, cell cycle phases, and protein expression (p27, SKP2, cMYC, AURORA A, SUPT16H, SSRP1).</p><p><strong>Results: </strong>Both PGP and DN significantly inhibited DNA synthesis and cell cycle re-entry (G<sub>0</sub>-to-G<sub>1</sub> transition) in vitro. In vivo, tumor volume and weight decreased by 26-50% (p < 0.05) in treated mice. Treatments upregulated p27 while downregulating SKP2, cMYC, AURORA A, SUPT16H, and SSRP1. No synergistic effect was observed, but additive efficacy (Combination Index ≈1) was noted at a 10:1 PGP:DN ratio.</p><p><strong>Discussion: </strong>PGP and DN sustain dormancy by modulating key cell cycle regulators, highlighting their potential to reduce recurrence and combat drug resistance. These findings underscore the therapeutic promise of traditional Chinese medicines in managing dormant cancer cells. Future studies should identify active compounds and validate mechanisms in advanced models.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"3997-4010"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S494168","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Dormant cancer cells, capable of reactivating from the G0 phase, drive tumor recurrence and therapy resistance. Current clinical strategies targeting dormancy remain limited. This study evaluates Punica granatum peel (PGP) and Dioscorea Nipponica (DN) for their ability to sustain dormancy in lung cancer cells and inhibit reactivation.
Methods: Dormancy was induced in A549 and H460 lung cancer cells via contact inhibition or serum deprivation. Subcutaneous and orthotopic xenograft mouse models were employed. Cells and mice were treated with PGP, DN, or their combination. SYBR Green assays, flow cytometry, and immunoblotting assessed DNA synthesis, cell cycle phases, and protein expression (p27, SKP2, cMYC, AURORA A, SUPT16H, SSRP1).
Results: Both PGP and DN significantly inhibited DNA synthesis and cell cycle re-entry (G0-to-G1 transition) in vitro. In vivo, tumor volume and weight decreased by 26-50% (p < 0.05) in treated mice. Treatments upregulated p27 while downregulating SKP2, cMYC, AURORA A, SUPT16H, and SSRP1. No synergistic effect was observed, but additive efficacy (Combination Index ≈1) was noted at a 10:1 PGP:DN ratio.
Discussion: PGP and DN sustain dormancy by modulating key cell cycle regulators, highlighting their potential to reduce recurrence and combat drug resistance. These findings underscore the therapeutic promise of traditional Chinese medicines in managing dormant cancer cells. Future studies should identify active compounds and validate mechanisms in advanced models.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.