How Shelterin Orchestrates the Replication and Protection of Telomeres.

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
Titia de Lange
{"title":"How Shelterin Orchestrates the Replication and Protection of Telomeres.","authors":"Titia de Lange","doi":"10.1101/cshperspect.a041685","DOIUrl":null,"url":null,"abstract":"<p><p>Efforts to determine how telomeres solve the end-protection problem led to the discovery of shelterin, a conserved six-subunit protein complex that specifically binds to the long arrays of telomeric TTAGGG repeats at vertebrate chromosome ends. The mechanisms by which shelterin prevents telomeres from being detected as sites of DNA damage and how shelterin prevents inappropriate DNA repair pathways are now largely known. More recently, shelterin has emerged as a central player in solving the second major problem at telomeres: how to complete the duplication of telomeric DNA. This end-replication problem results from the inability of the canonical DNA replication machinery to maintain the DNA at chromosome ends. Shelterin solves this problem by recruiting two enzymes that can replenish the lost telomeric repeats: telomerase and CST-Polα/primase. How shelterin accomplishes these critical tasks is reviewed here.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041685","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts to determine how telomeres solve the end-protection problem led to the discovery of shelterin, a conserved six-subunit protein complex that specifically binds to the long arrays of telomeric TTAGGG repeats at vertebrate chromosome ends. The mechanisms by which shelterin prevents telomeres from being detected as sites of DNA damage and how shelterin prevents inappropriate DNA repair pathways are now largely known. More recently, shelterin has emerged as a central player in solving the second major problem at telomeres: how to complete the duplication of telomeric DNA. This end-replication problem results from the inability of the canonical DNA replication machinery to maintain the DNA at chromosome ends. Shelterin solves this problem by recruiting two enzymes that can replenish the lost telomeric repeats: telomerase and CST-Polα/primase. How shelterin accomplishes these critical tasks is reviewed here.

庇护蛋白如何协调端粒的复制和保护。
在确定端粒如何解决末端保护问题的努力中,发现了庇护蛋白,这是一种保守的六亚基蛋白复合物,专门与脊椎动物染色体末端的TTAGGG重复序列的长阵列结合。庇护蛋白阻止端粒被检测为DNA损伤位点的机制,以及庇护蛋白如何阻止不适当的DNA修复途径,现在已经广为人知。最近,庇护蛋白在解决端粒的第二个主要问题——如何完成端粒DNA的复制——中发挥了核心作用。这种末端复制问题是由于典型的DNA复制机制无法维持染色体末端的DNA。Shelterin通过招募两种酶来补充丢失的端粒重复序列来解决这个问题:端粒酶和CST-Polα/引物酶。这里将回顾庇护所如何完成这些关键任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信