Paulo Henrique Fonseca Carmo, Maria Fernanda Siqueira Fernandes da Costa, Anna Carolina Pinheiro Lage, Maíra Terra Garcia, Juliana Campos Junqueira
{"title":"Gold nanorods non-functionalised and associated with gallic acid exhibit activity against non-<i>albicans Candida</i> species.","authors":"Paulo Henrique Fonseca Carmo, Maria Fernanda Siqueira Fernandes da Costa, Anna Carolina Pinheiro Lage, Maíra Terra Garcia, Juliana Campos Junqueira","doi":"10.1080/08927014.2025.2504026","DOIUrl":null,"url":null,"abstract":"<p><p>Strategies focusing on natural compounds and nanotechnology have been explored to overcome the limitations of conventional therapies in managing <i>Candida</i> infections. In this context, metal nanoparticles, both non-functionalised and combined with gallic acid, may offer a promising alternative. This study investigated the effects of gold nanoparticles non-functionalised (AuNp) and associated with gallic acid (AuNpGA) against planktonic cells and biofilms of <i>Nakaseomyces glabratus</i>, <i>Pichia kudriavzevii</i>, <i>Candida parapsilosis</i>, and <i>Candida tropicalis</i>. Both AuNp and AuNpGA inhibited the growth of all strains at 1.56 µg/mL and exhibited fungicidal effects at concentrations ranging from 1.56 to 3.12 µg/mL. The time-kill curve revealed that AuNpGA and AuNp completely inhibited the viability of all strains in planktonic cultures at 8 and 24 h, respectively, exhibiting greater antifungal activity compared to fluconazole. Treatment with AuNp increased ROS production against <i>N. glabratus</i> and <i>P. kudriavzevii.</i> Oxidative stress was enhanced against all strains after treatment with AuNpGA, and exposure to this compound reduced ergosterol levels of <i>P. kudriavzevii</i> and <i>C. parapsilosis.</i> Furthermore, AuNpGA and AuNp significantly decreased the viability of all <i>Candida</i> biofilms at 7.8 and 15.6 µg/mL, respectively. In summary, both gold nanoparticles exhibited activity against planktonic cells and biofilms, suggesting their potential as agents for treating <i>Candida</i> infections.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"523-535"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2504026","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Strategies focusing on natural compounds and nanotechnology have been explored to overcome the limitations of conventional therapies in managing Candida infections. In this context, metal nanoparticles, both non-functionalised and combined with gallic acid, may offer a promising alternative. This study investigated the effects of gold nanoparticles non-functionalised (AuNp) and associated with gallic acid (AuNpGA) against planktonic cells and biofilms of Nakaseomyces glabratus, Pichia kudriavzevii, Candida parapsilosis, and Candida tropicalis. Both AuNp and AuNpGA inhibited the growth of all strains at 1.56 µg/mL and exhibited fungicidal effects at concentrations ranging from 1.56 to 3.12 µg/mL. The time-kill curve revealed that AuNpGA and AuNp completely inhibited the viability of all strains in planktonic cultures at 8 and 24 h, respectively, exhibiting greater antifungal activity compared to fluconazole. Treatment with AuNp increased ROS production against N. glabratus and P. kudriavzevii. Oxidative stress was enhanced against all strains after treatment with AuNpGA, and exposure to this compound reduced ergosterol levels of P. kudriavzevii and C. parapsilosis. Furthermore, AuNpGA and AuNp significantly decreased the viability of all Candida biofilms at 7.8 and 15.6 µg/mL, respectively. In summary, both gold nanoparticles exhibited activity against planktonic cells and biofilms, suggesting their potential as agents for treating Candida infections.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.