Tanashvi Seth, Shruti Saxena, Barkha Ravi, Girdhar K. Pandey
{"title":"Mastering the plant growth symphony: The interplay between calcium sensing machinery and phytohormone signaling during abiotic stress","authors":"Tanashvi Seth, Shruti Saxena, Barkha Ravi, Girdhar K. Pandey","doi":"10.1016/j.bbagen.2025.130820","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change introduces a multitude of abiotic stressors, affecting plants' ability to thrive and produce. Abiotic stresses significantly impair plant growth, development, and production, jeopardizing food security. Despite extensive research on individual stress adaptation mechanisms, a critical gap remains in understanding the synergistic role of calcium (Ca<sup>2+</sup>) signaling and phytohormonal regulation in plant stress responses. Ca<sup>2+</sup>, a ubiquitous second messenger, plays a pivotal role in stress perception and signal transduction, while phytohormones regulate adaptive physiological and molecular responses. This review aims to bridge the knowledge gap by synthesizing recent advancements in Ca<sup>2+</sup>-phytohormone interactions and their combined role in enhancing plant resilience to abiotic stress. Hence, understanding these interconnected signaling cascades would pave the path for the development of innovative strategies for enhancing crop stress tolerance, thereby promoting sustainable agriculture in the face of climate change.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 8","pages":"Article 130820"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000650","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change introduces a multitude of abiotic stressors, affecting plants' ability to thrive and produce. Abiotic stresses significantly impair plant growth, development, and production, jeopardizing food security. Despite extensive research on individual stress adaptation mechanisms, a critical gap remains in understanding the synergistic role of calcium (Ca2+) signaling and phytohormonal regulation in plant stress responses. Ca2+, a ubiquitous second messenger, plays a pivotal role in stress perception and signal transduction, while phytohormones regulate adaptive physiological and molecular responses. This review aims to bridge the knowledge gap by synthesizing recent advancements in Ca2+-phytohormone interactions and their combined role in enhancing plant resilience to abiotic stress. Hence, understanding these interconnected signaling cascades would pave the path for the development of innovative strategies for enhancing crop stress tolerance, thereby promoting sustainable agriculture in the face of climate change.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.