Loperamide-induced constipation is associated with excessive accumulation of bile acids and cholesterol in the liver of mice; attenuation by hesperidin
Jiahui Li , Dan Bi , Ya Nie , Huijuan Wu , Yuting Lei , Siping Yu , Hedong Rong , Yanhong Yang , Zili Lei
{"title":"Loperamide-induced constipation is associated with excessive accumulation of bile acids and cholesterol in the liver of mice; attenuation by hesperidin","authors":"Jiahui Li , Dan Bi , Ya Nie , Huijuan Wu , Yuting Lei , Siping Yu , Hedong Rong , Yanhong Yang , Zili Lei","doi":"10.1016/j.fct.2025.115561","DOIUrl":null,"url":null,"abstract":"<div><div>Loperamide, a widely used antidiarrheal agent, frequently induces constipation alongside other adverse effects. This study explored hesperidin's therapeutic potential in alleviating loperamide-induced constipation and its underlying mechanisms. Constipation models were established in HFD- or NFD-fed mice via loperamide administration (5 mg/kg/day). Hesperidin (100 mg/kg/day) significantly increased fecal weight and moisture in constipated mice. Biochemical analyses revealed elevated cholic acid/chenodeoxycholic acid ratios in serum and liver tissues of loperamide-treated HFD mice, indicating bile acids dysregulation. qRT-PCR and Western blot results demonstrated that hesperidin downregulated hepatic expression of cholesterol/bile acids biosynthesis genes (e.g., <em>Hmgcr</em>, <em>Cyp7a1</em>, <em>Ch25h</em>), which were overexpressed in constipated mice. Concurrently, hesperidin enhanced the expression of transporters (<em>Abcg5</em>, <em>Abcb11</em>, <em>Abcc2</em>) responsible for biliary cholesterol and bile acids efflux. Furthermore, hesperidin upregulated hepatic nuclear receptors (FXR/SHP), key regulators of bile acids homeostasis. Hesperidin alleviates loperamide-induced constipation through two parallel mechanisms: decreasing hepatic cholesterol accumulation and enhancing bile acids excretion. This dual action results from coordinated regulation of biosynthesis enzymes and transport proteins. This study highlights hesperidin's potential as an adjunct therapy to counteract loperamide-related constipation.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"203 ","pages":"Article 115561"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691525003291","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Loperamide, a widely used antidiarrheal agent, frequently induces constipation alongside other adverse effects. This study explored hesperidin's therapeutic potential in alleviating loperamide-induced constipation and its underlying mechanisms. Constipation models were established in HFD- or NFD-fed mice via loperamide administration (5 mg/kg/day). Hesperidin (100 mg/kg/day) significantly increased fecal weight and moisture in constipated mice. Biochemical analyses revealed elevated cholic acid/chenodeoxycholic acid ratios in serum and liver tissues of loperamide-treated HFD mice, indicating bile acids dysregulation. qRT-PCR and Western blot results demonstrated that hesperidin downregulated hepatic expression of cholesterol/bile acids biosynthesis genes (e.g., Hmgcr, Cyp7a1, Ch25h), which were overexpressed in constipated mice. Concurrently, hesperidin enhanced the expression of transporters (Abcg5, Abcb11, Abcc2) responsible for biliary cholesterol and bile acids efflux. Furthermore, hesperidin upregulated hepatic nuclear receptors (FXR/SHP), key regulators of bile acids homeostasis. Hesperidin alleviates loperamide-induced constipation through two parallel mechanisms: decreasing hepatic cholesterol accumulation and enhancing bile acids excretion. This dual action results from coordinated regulation of biosynthesis enzymes and transport proteins. This study highlights hesperidin's potential as an adjunct therapy to counteract loperamide-related constipation.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.