{"title":"Self-limiting states of polar misfits: frustrated assembly of warped-jigsaw particles.","authors":"Michael Wang, Gregory M Grason","doi":"10.1039/d5sm00136f","DOIUrl":null,"url":null,"abstract":"<p><p>We study the ground state thermodynamics of a model class of geometrically frustrated assemblies, known as warped-jigsaw particles. While it is known that frustration in soft matter assemblies has the ability to propagate up to mesoscopic, multi-particle size scales, notably through the selection of the self-limiting domain, little is understood about how the symmetry of shape-misfit at the particle scale influences emergent morphologies at the mesoscale. Here we show that polarity in the shape-misfit of warped-jigsaw puzzles manifests at a larger scale in the morphology and thermodynamics of the ground-state assembly of self-limiting domains. We use a combination of continuum theory and discrete particle simulations to show that the polar misfit gives rise to two mesoscopically distinct polar, self-limiting ribbon domains. Thermodynamic selection between the two ribbon morphologies is controlled by a combination of the binding anisotropy along distinct neighbor directions and the orientation of polar shape-misfit. These predictions are valuable as design features for ongoing efforts to program self-limiting assemblies through the synthesis of intentionally frustrated particles, further suggesting a generic classification of frustrated assembly behavior in terms of the relative symmetries of shape-misfit and the underlying long-range inter-particle order it frustrates.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00136f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We study the ground state thermodynamics of a model class of geometrically frustrated assemblies, known as warped-jigsaw particles. While it is known that frustration in soft matter assemblies has the ability to propagate up to mesoscopic, multi-particle size scales, notably through the selection of the self-limiting domain, little is understood about how the symmetry of shape-misfit at the particle scale influences emergent morphologies at the mesoscale. Here we show that polarity in the shape-misfit of warped-jigsaw puzzles manifests at a larger scale in the morphology and thermodynamics of the ground-state assembly of self-limiting domains. We use a combination of continuum theory and discrete particle simulations to show that the polar misfit gives rise to two mesoscopically distinct polar, self-limiting ribbon domains. Thermodynamic selection between the two ribbon morphologies is controlled by a combination of the binding anisotropy along distinct neighbor directions and the orientation of polar shape-misfit. These predictions are valuable as design features for ongoing efforts to program self-limiting assemblies through the synthesis of intentionally frustrated particles, further suggesting a generic classification of frustrated assembly behavior in terms of the relative symmetries of shape-misfit and the underlying long-range inter-particle order it frustrates.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.