Self-limiting states of polar misfits: frustrated assembly of warped-jigsaw particles.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-05-20 DOI:10.1039/d5sm00136f
Michael Wang, Gregory M Grason
{"title":"Self-limiting states of polar misfits: frustrated assembly of warped-jigsaw particles.","authors":"Michael Wang, Gregory M Grason","doi":"10.1039/d5sm00136f","DOIUrl":null,"url":null,"abstract":"<p><p>We study the ground state thermodynamics of a model class of geometrically frustrated assemblies, known as warped-jigsaw particles. While it is known that frustration in soft matter assemblies has the ability to propagate up to mesoscopic, multi-particle size scales, notably through the selection of the self-limiting domain, little is understood about how the symmetry of shape-misfit at the particle scale influences emergent morphologies at the mesoscale. Here we show that polarity in the shape-misfit of warped-jigsaw puzzles manifests at a larger scale in the morphology and thermodynamics of the ground-state assembly of self-limiting domains. We use a combination of continuum theory and discrete particle simulations to show that the polar misfit gives rise to two mesoscopically distinct polar, self-limiting ribbon domains. Thermodynamic selection between the two ribbon morphologies is controlled by a combination of the binding anisotropy along distinct neighbor directions and the orientation of polar shape-misfit. These predictions are valuable as design features for ongoing efforts to program self-limiting assemblies through the synthesis of intentionally frustrated particles, further suggesting a generic classification of frustrated assembly behavior in terms of the relative symmetries of shape-misfit and the underlying long-range inter-particle order it frustrates.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00136f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the ground state thermodynamics of a model class of geometrically frustrated assemblies, known as warped-jigsaw particles. While it is known that frustration in soft matter assemblies has the ability to propagate up to mesoscopic, multi-particle size scales, notably through the selection of the self-limiting domain, little is understood about how the symmetry of shape-misfit at the particle scale influences emergent morphologies at the mesoscale. Here we show that polarity in the shape-misfit of warped-jigsaw puzzles manifests at a larger scale in the morphology and thermodynamics of the ground-state assembly of self-limiting domains. We use a combination of continuum theory and discrete particle simulations to show that the polar misfit gives rise to two mesoscopically distinct polar, self-limiting ribbon domains. Thermodynamic selection between the two ribbon morphologies is controlled by a combination of the binding anisotropy along distinct neighbor directions and the orientation of polar shape-misfit. These predictions are valuable as design features for ongoing efforts to program self-limiting assemblies through the synthesis of intentionally frustrated particles, further suggesting a generic classification of frustrated assembly behavior in terms of the relative symmetries of shape-misfit and the underlying long-range inter-particle order it frustrates.

极性不匹配的自我限制状态:扭曲的拼图粒子的受挫组装。
我们研究了一类几何受挫组合模型的基态热力学,称为翘曲拼图粒子。虽然已知软物质组装中的挫折能够传播到介观,多粒子尺寸尺度,特别是通过选择自限制域,但对于粒子尺度上形状不匹配的对称性如何影响中观尺度上的涌现形态知之甚少。在这里,我们证明了扭曲拼图的形状不匹配的极性在更大的尺度上表现在自限制域的基态组装的形态学和热力学中。我们使用连续统理论和离散粒子模拟的组合来表明极性失配会产生两个介观上不同的极性,自限制带域。两种带状形态之间的热力学选择是由不同相邻方向的结合各向异性和极性形状失配方向的组合控制的。这些预测是有价值的设计特征,用于通过合成有意受挫粒子来编程自我限制组装,进一步提出了受挫组装行为的一般分类,根据形状不匹配的相对对称性和潜在的远程粒子间顺序进行受挫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信