Michael W Founds, Olivia L Murtagh, R Justin Grams, Zhihong Li, Anthony M Ciancone, Robert J Seal, Ku-Lung Hsu
{"title":"Human PTGR2 Inactivation Alters Eicosanoid Metabolism and Cytokine Response of Inflammatory Macrophages.","authors":"Michael W Founds, Olivia L Murtagh, R Justin Grams, Zhihong Li, Anthony M Ciancone, Robert J Seal, Ku-Lung Hsu","doi":"10.1021/acschembio.5c00231","DOIUrl":null,"url":null,"abstract":"<p><p>Prostaglandin reductase 2 (PTGR2) regulates inflammatory lipid signaling through the metabolism of the PGE2 metabolite 15-keto-PGE<sub>2</sub>. PTGR2 inhibitors have been reported but whether small molecule inactivation can recapitulate the anti-inflammatory phenotype observed in PTGR2 knockout systems has not been explored. Here, we disclose an optimized sulfonyl triazole (SuTEx) inhibitor of human PTGR2 that blocks biochemical activity by liganding the noncatalytic tyrosines Y100 and Y265 in the active site. Quantitative and multiplexed chemoproteomics verified covalent engagement of endogenous PTGR2 in THP1 macrophages with moderate proteome-wide selectivity. PTGR2 inactivation with the SuTEx inhibitor resulted in suppression of secreted inflammatory lipids and TNF-α in lipopolysaccharide (LPS)-stimulated macrophages. Collectively, our findings identify a potent covalent inhibitor of human PTGR2 that can serve as a tool compound for exploring lipid metabolism and signaling in macrophages.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00231","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prostaglandin reductase 2 (PTGR2) regulates inflammatory lipid signaling through the metabolism of the PGE2 metabolite 15-keto-PGE2. PTGR2 inhibitors have been reported but whether small molecule inactivation can recapitulate the anti-inflammatory phenotype observed in PTGR2 knockout systems has not been explored. Here, we disclose an optimized sulfonyl triazole (SuTEx) inhibitor of human PTGR2 that blocks biochemical activity by liganding the noncatalytic tyrosines Y100 and Y265 in the active site. Quantitative and multiplexed chemoproteomics verified covalent engagement of endogenous PTGR2 in THP1 macrophages with moderate proteome-wide selectivity. PTGR2 inactivation with the SuTEx inhibitor resulted in suppression of secreted inflammatory lipids and TNF-α in lipopolysaccharide (LPS)-stimulated macrophages. Collectively, our findings identify a potent covalent inhibitor of human PTGR2 that can serve as a tool compound for exploring lipid metabolism and signaling in macrophages.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.