Yi Zhu, Chao Xi, Sen Wang, Lu Xu, Xiang Chen, Zhicheng Wang
{"title":"Knowledge-Driven and Low-Rank Tensor Regularized Multiview Fuzzy Clustering for Alzheimer’s Diagnosis","authors":"Yi Zhu, Chao Xi, Sen Wang, Lu Xu, Xiang Chen, Zhicheng Wang","doi":"10.1155/int/1458773","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Alzheimer’s disease (AD), as a complex neurodegenerative disorder, is the most common cause of dementia. In recent years, the emergence of multiview data has brought new possibilities for the diagnosis of AD. However, due to uneven density and uncertainty in the multiview data, existing algorithms still face challenges in extracting consistent and complementary information across views. To address this issue, a multiview fuzzy clustering algorithm, which integrates high-density knowledge point extraction and low-rank tensor regularization (K-LRT-MFC), is proposed in this paper. First, high-density knowledge point extraction is employed to tackle the issue of uneven density in high-dimensional data, enhancing the stability and accuracy of single-view clustering. Second, low-rank tensor regularization is applied to effectively capture high-order complementary information among multiview data, significantly improving the precision and computational efficiency of multiview clustering. Experimental results on several publicly available AD diagnostic datasets demonstrate that the proposed method outperforms existing approaches in terms of accuracy, sensitivity, and specificity, providing an efficient and accurate solution for early AD diagnosis.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/1458773","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/1458773","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD), as a complex neurodegenerative disorder, is the most common cause of dementia. In recent years, the emergence of multiview data has brought new possibilities for the diagnosis of AD. However, due to uneven density and uncertainty in the multiview data, existing algorithms still face challenges in extracting consistent and complementary information across views. To address this issue, a multiview fuzzy clustering algorithm, which integrates high-density knowledge point extraction and low-rank tensor regularization (K-LRT-MFC), is proposed in this paper. First, high-density knowledge point extraction is employed to tackle the issue of uneven density in high-dimensional data, enhancing the stability and accuracy of single-view clustering. Second, low-rank tensor regularization is applied to effectively capture high-order complementary information among multiview data, significantly improving the precision and computational efficiency of multiview clustering. Experimental results on several publicly available AD diagnostic datasets demonstrate that the proposed method outperforms existing approaches in terms of accuracy, sensitivity, and specificity, providing an efficient and accurate solution for early AD diagnosis.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.